cho 2n+1 và 3n+1 là số chính phương .Chứng minh rằng :5n+3 là hợp số
Cho n là số nguyên dương. Chứng minh rằng: 2n+1 và 3n+1 là các số chính phương thì 5n+3 không là số nguyên tố.
Câu 6. Cho 2n + 1 và 3n + 1 là các số chính phương. Chứng minh 5n+ 3 là hợp số
ai xong tr mình link cho
2n+1=a2" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">3n+1=b2" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
4.(2n+1)−(3n+1)=5n+3=4a2−b2=(2a−b)(2a+b)" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
đpcm" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">5n+3" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> đã thành tích của 2 số nên là hợp số
2n+1=a2" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">3n+1=b2" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">4.(2n+1)−(3n+1)=5n+3=4a2−b2=(2a−b)(2a+b)" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
đpcm" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">5n+3" role="presentation" style="background-color:rgb(247, 247, 247); border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> đã thành tích của 2 số nên là hợp số
Đặt 2n+1 = a^2 ; 3n+1=b^2
dễ thấy : 4(2n+1)-(3n+1)=5n+3=4a^2 - b^2 = (2a-b)(2a+b)
vì 5n +3= (2a-b)(2a+b)
nên 5n+3 là hợp số
vậy 5n+3 là hợp số (ĐPSM )
Cho 2n+1 và 3n+1 là số chính phương. Chứng minh rằng 5n+3 là hợp số
Đặt \(2n+1=a^2\)\(;3n+1=b^2\)
Dễ thấy:\(4\left(2n+1\right)-\left(3n+1\right)=5n+3=4a^2-b^2=\left(2a-b\right)\left(2a+b\right)\)
Vì \(5n+3\)\(=\left(2a-b\right)\left(2a+b\right)\) Nên \(5n+3\) là hợp số.
Vậy \(5n+3\) là hợp số (ĐPCM)
Cho n là số nguyên dương.CMR:Nếu 2n 1 và 3n 1 là số chính phương thì 5n 3 không là số nguyên tố
Đặt 2n+1=a2,3n+1=b2(\(a,b\in N;a,b>1\))
Ta có: 4(2n+1)-3n+1=4a2-b2
<=> 5n+3=(2a+b)(2a-b)
=> 5n+3 là hợp số
1/ Tìm số tự nhiên n để A = 12n 2 - 5n - 25 là số nguyên tố.
2/ Chứng minh rằng: 2n + 1, 3n + 1 (n là số tự nhiên ) đều là số chính phương thì n chia hết cho 20
biết thì trả lời đi đừng nói linh tinh nữa
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
: Chứng minh rằng nếu 2n + 1 và 3n + 1 là hai số chính phương thì n chia hết cho 40
Biết 2n + 1 và 3n + 1 là các số chính phương. C/m :
a/ n chia hết cho 60
b/ 5n + 3 là hợp số
Cách làm + đáp số = tick
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40