Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|
\(2n+1=a^2\)
Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)
\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ
Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)
\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn
\(\Rightarrow\)n là số chẵn
Vì n là số chẵn nên 3a+1 là số lẻ
\(\Rightarrow3n+1=\left(2p+1\right)^2\)
\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)
Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)
Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)