Tam giác ABC vuông tại A có đường cao AH, cạnh AB bằng \(2\sqrt{5}cm\). Hãy tính cạnh huyền BC biết \(\frac{HB}{HC}=\frac{1}{4}\)
Tam giác ABC vuông tại A có đường cao AH bằng 12 cm. Hãy tính cạnh huyền BC nếu biết HB : HC = 1 : 3 ?
Theo gt: \(\dfrac{HB}{HC}=\dfrac{1}{3}\Leftrightarrow HB=\dfrac{HC}{3}\left(1\right)\)
Ta có: \(AH^2=BH.CH\left(2\right)\) (định lí 2)
Thay (1) vào (2) ta được:
\(AH^2=\dfrac{HC}{3}.HC=\dfrac{HC^2}{3}\)
mà AH = 12cm
\(\Rightarrow12^2=\dfrac{HC^2}{3}\Leftrightarrow HC^2=12^2.3=432\Leftrightarrow HC=12\sqrt{3}\left(cm\right)\)
Thay HC = \(12\sqrt{3}\) vào (1) ta được:
\(HB=\dfrac{HC}{3}=\dfrac{12\sqrt{3}}{3}=4\sqrt{3}\left(cm\right)\)
Mặt khác BC = HB + HC = \(4\sqrt{3}+12\sqrt{3}=16\sqrt{3}\left(cm\right)\)
Tam giác ABC vuông tại A có đường cao AH bằng 12cm. Hãy tính cạnh huyền BC nếu biết HB : HC = 1 : 3.
A H 2 = HB. HC = 12 2 = 144 nên HC = 3HB nên H B 2 = 12 2 /3 = 48, suy ra HB = 4 3 , HC = 12 3 và BC = HB + HC = 16 3 (cm).
1/cho tam giác abc vuông tại a đường cao AH=2cm,AB=1/2AC. tính AB,AC,HB,HC
2/cho tam giác abc vuông tại a đường cao AH=12cm.tính cạnh huyền BC,biết \(\dfrac{HB}{HC}\)=\(\dfrac{1}{3}\)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
4. a)Tính cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng a.
b) Tính cạnh của một tam giác đều có đường cao bằng h.
5. Cho tam giác nhọn ABC, đường cao AH = 12 cm, AB = 13 cm, HC = 16 cm. Tính các độ dài AC, BC.
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6
cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6
a) tính độ dài AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng mih : BK.BM=BH.BC
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A ( AC< AB) có AH là đường cao . HB=5,HC=4. Tam giác ABC vuông có cạnh huyền BC=a không đổi . góc a bằng bao nhiêu độ thì tam giác AHI lớn nhất . tính giá trị lớn nhất đó theo a.
giúp e với ạ e đang cần gấp
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 a) tính độ dài AH, AB, AC b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A ( AC<AB) , AH là đường cao, HB=5,HC=4. Tam giác ABC vuông có cạnh huyền BC=a không đổi .Góc B bằng bao nhiêu độ để diện tích tam giác AHI lớn nhất .Tính giá trị lớn nhất đó theo a