Cho a , b , c \(\in\)Z chung minh
a) với c khac 0 , ac = bc suy ra a = b
b) với c lon hon 0 , ac lon hon bc suy ra a lon hon b
cho a,b,c lon hon bang 0 va ab+bc+ca lon hon bang 3.c/m a4/b+3c +b4/c+3a +c4/a+3b
Cho các số a,b,c thỏa mãn 1 lon hon bang a,b,c .
a,b,c lon hon bang 0 . C/m :
a + b2 + c3 - ab - bc - ca , nhỏ hơn bằng 1
1. Cho a, b, c>0 thỏa mãn a+b +c+ ab+ ac+ bc= 6.
Chứng minh rằng: (a3)/b + (b3)/c+ (c3)/a lon hon hoac bang 3
Cho 2 hinh chu nhat co cung dien tich .HInh 1 co kich thuoc a va b (a lon hon b) hinh 2 co kich thuoc c va d (c lon hon d) .chung minh rang nêu a lon hon c thi chu vi cua hinh1 lon hon chu vi hinh 2
Theo đề bài ta có \
\(\hept{\begin{cases}a>b;c>d\\ab=cd\\a>c\end{cases}}\)
\(\Rightarrow c>d>b\)(vì nếu \(d\le b\)thì \(ab>cd\))
Ta cần chứng minh
\(a+b>c+d\)
\(\Leftrightarrow\frac{cd}{b}+b>c+d\)
\(\Leftrightarrow cd+b^2>cb+db\)
\(\Leftrightarrow\left(cd-cb\right)+\left(b^2-db\right)>0\)
\(\Leftrightarrow\left(d-b\right)\left(c-b\right)>0\)(đúng)
\(\Rightarrow\)ĐPCM
Bai 2: cho a,b,c>0.CMR
\(\frac{a^3}{bc}+\frac{b^3}{ac}+\frac{c^3}{ab}\)lon hon hoac bang a+b+c
cho tam giac ABC co AB nho hon AC D la trung diem BC tren tia doi DA lay E sao cho DA=DE
chung minh rang
a) tam giac ABC= tam giac ECD
b)EC lon hon AC
c) goc DAB nho hon goc DAC
cmr : a^2/b^2 +b^2/c^2+c^2/a^2 luon luon lon hon hoac bang c/b+ b/a+ a/c voi a,b,c lon hon 0
CMR so thuc a,b,c thi a^2+b^2+c^2+ab+bc+ca lon hon hoac bang 0
CMR so thuc a,b,c thi a^2+b^2+c^2+ab+bc+ca lon hon hoac bang 0