A=1/2 +1/2mu 2+...+1/2 mu 15
A = 2mu 0 + 2 mu 1 + 2mu 2 + ...+ 2 mu 50
A= \(2^0+2^1+2^2+...+2^{50}\)
\(\Rightarrow\)2A =2(\(2^0+2^1+2^2+...+2^{50}\))
\(\Rightarrow\)2A= \(2+2^2+2^3+2^4+...+2^{51}\)
\(\Rightarrow\)2A-A= (\(2+2^2+2^3+2^4+...+2^{51}\))-(\(2+2^2+2^3+2^4+...+2^{50}\))
\(\Rightarrow\)A= \(2^{51}-1\)
A = 2mu 0 + 2 mu 1 + 2mu 2 + ...+ 2 mu 50
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016 < 0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
\(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2014}}-\frac{1}{2^{2016}}\)
\(\Rightarrow2^2A=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\frac{1}{2^8}-...+\frac{1}{2^{2012}}-\frac{1}{2^{2014}}\)
\(\Rightarrow2^2A+A=1+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{2014}}-\frac{1}{2^{2014}}\right)-\frac{1}{2^{2016}}\)
\(\Rightarrow5A=1-\frac{1}{2^{2016}}< 1\Rightarrow A< \frac{1}{5}=0,2\)
đây là toán lớp 2 hả?
đây là toán lớp mấy thế
c/m 1/2mu 3 +1/3 mu 3 +..................+1/ 2006 mu 3<1/4
c/m 1/2 mu 3 +1/3 mu 3 +..................+1/2006 mu3 >1/15
chung to rang B = 1/2mu 2 cong 1/3 mu 2 cong 1/4 mu 2 cong 1/5 mu 2 cong 1/6 mu 2cong 1/7 mu 2 cong 1/8 mu2 nho hon 1
S= 2mu 2010 - 2 mu 2009 - 2 mu 2008 - ...- 2 - 1
cho a = 1+2+ 2 mũ 2 + 2 mũ 3 + 2mu 4 +....+ 2 mu 200 hay việt á công 1 dưới dạng lũy thừa