tìm các số nguyên x,y, biết rằng:
3/x+1/3=y/3
tìm các số nguyên dương x,y biết rằng 3/x-5-y/3=1/6
=>\(\dfrac{9-y\left(x-5\right)}{3\left(x-5\right)}=\dfrac{1}{6}\)
=>\(\dfrac{18-2y\left(x-5\right)}{6\left(x-5\right)}=\dfrac{x-5}{6\left(x-5\right)}\)
=>18-2y(x-5)=x-5
=>(x-5)+2y(x-5)=18
=>(x-5)(2y+1)=18
=>\(\left(x-5;2y+1\right)\in\left\{\left(2;9\right);\left(6;3\right);\left(18;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(7;4\right);\left(11;1\right)\right\}\)
Tìm các cặp số nguyên (x;y) biết rằng: \(\dfrac{x}{3}\)+\(\dfrac{1}{2}\)=\(\dfrac{1}{y+3}\)
\(\dfrac{x}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{y+3}\) Đk (\(y\ne-3\))⇒ \(\dfrac{2x+3}{6}\) = \(\dfrac{1}{y+3}\) ⇒ (2\(x\)+3)(y+3) = 6
Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x\) +3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -9/2 | -3 | -5/2 | -2 | -1 | -1/2 | 0 | \(\dfrac{3}{2}\) |
y+3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -4 | -5 | -6 | -9 | 3 | 0 | -1 | -2 |
Từ bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\), y) = ( -3; -5); ( -2; -9); ( -1; 3); (0; -1);
Tìm các số nguyên x, biết rằng: (x + 1).(y - 3) = 3
x,y nguyên => x+1; y-3 nguyên
=> x+1; y-3\(\in\)Ư(3)={-3;-1;1;3}
ta có bảng
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
y-3 | -1 | -3 | 3 | 1 |
y | 2 | 0 | 6 | 4 |
tìm các số nguyên x,y biết rằng 3-x/2=1/y
\(3-\frac{x}{2}=\frac{1}{y}\)
\(\Rightarrow\frac{6-x}{2}=\frac{1}{y}\Rightarrow\left(6-x\right)y=2\)
Ta thấy 2 = 1.2 ; 2.1; -1.-2 ; -2.-1
6 - x | 1 | -1 | 2 | -2 |
x | 5 | 7 | 4 | 8 |
y | 2 | -2 | 1 | -1 |
\(\frac{3-x}{2}=\frac{1}{y}\)
\(\Rightarrow2=y\left(3-x\right)\)
mà ta thấy :\(2=1.2=2.1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)
Ta có bảng:
y | 1 | 2 | -1 | -2 |
x-3 | 2 | 1 | -2 | -1 |
x | 5 | 4 | 1 | 2 |
Tìm các số nguyên x;y biết rằng :
1/x - y/6 = 1/3
Ta có : \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\Leftrightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\Leftrightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Leftrightarrow\left(2+y\right)x=6\Leftrightarrow2+y;x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2 + y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
\(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2}{6}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Rightarrow x\left(2+y\right)=6\)
Ta có bảng sau :
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2+y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ( x ; y ) = { ( 1 ; 4 ) , ( -1 ; -8 ) , ( 2 ; 1 ) , ( -2 ; -5 ) , ( 3 ; 0 ) , ( -3 ; -4 ) , ( 6 ; -1 ) , ( -6 ; -3 ) }
ta có: \(\frac{1}{x}-\frac{y}{6}\)=\(\frac{1}{3}\)<=>\(\frac{1}{x}\)=\(\frac{1}{3}\)+\(\frac{y}{6}\)
<=>\(\frac{1}{x}\)=\(\frac{2+y}{6}\)<=>x(2+y)=6
Mà x, y nguyên => x và y+2 ∈Ư(6)={±1;±2;±3;±6}
thay vào ta tìm được các cặp x,y.
Cho x,y là các số khác 0. Biết x+(1/y) và y+(1/x) là các số nguyên, chứng tỏ rằng A=x^3×y^3+ 1/x^3×y^3 cũng là số nguyên
Tìm các số nguyên x và y biết rằng:
a, (x+2).(y-3)=5
b, (x+1).(xy-1)=3
a) (x + 2)(y - 3) = 5 = 1.5 = (-1).5
x + 2 = 1 => x= -1
y - 3= 5 => y = 8
x + 2 = 5 => x = 3
y - 3= 1 => y= 4
x + 2 = -1 => x = -3
y - 3 = -5 => y = -2
x + 2 = -5 => x = -7
y - 3 = -1 => y = 2
Vậy (x , y) thuộc {(-1 ; 8) ; (3 ; 4) ; (-3 ; -2) ; (-7 ; 2)}
tìm các số nguyên x và y, biết rằng:
a) (x+2) (y-3) = 5
b) (x+1) (xy-1) = 3
a)Vì 5=1.5=5.1 nên (x+2).(y-3)=5=1.5=5.1
+Nếu x+2=1 --> x=(-1) và y=5+3=8
+Nếu x+2=5 --> x=3 và y=1+3=4
Vậy (x,y)={(-1,8);(5,4)}
b)Vì 3=1.3=3.1 --> (x+1).(xy-1)=3=1.3=3.1
+Nếu x+1=1 --> x=0 và y không tính được ( vì x=0 )(loại)
+Nếu x+1=3 --> x=2 và y=1
Vậy x=2 và y=1
k mình nha
Tìm các số nguyên x và y, biết rằng:
a)(x+2)(y-3)=5;
b)(x+1)(xy-1)=3