cho 1/x-1/y+1/z=0. Tính S=xz/y^2-yz/x^2-xy/z^2
Cho x,y,z#0 và 1/xy+1/yz+1/xz=0
tính x^2/yz+y^2/xy+z^2/xy
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
cho 1/x+1/y+1/z=0 (x,y,z khác 0). Tính yz/x^2+xy/z^2+xz/y^2
Cho 1/x + 1/y + 1/z =0 Tính A = yz/x^2 + xz/y^2 + xy/z^2
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)
\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)
Cho 1/x +1/y +1/z =0 Tính P = xy/z^2 + yz/x^2 + xz/y^2
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\hept{\begin{cases}1+\frac{x}{y}+\frac{x}{z}=0\\\frac{y}{x}+1+\frac{y}{z}=0\\\frac{z}{x}+\frac{z}{y}+1=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=-3\)
mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)
\(\Rightarrow yz+xz+xy=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(yz+xz+xy\right)=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
\(\Rightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)
Học tốt
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
<=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}.\left(-\frac{1}{z}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó: P = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
<=>xy+yz+zx=0 (x,y,z khác 0)
P=\(\frac{\left(xy\right)^2+\left(yz\right)^2+\left(yz\right)^2}{\left(xyz\right)^2}\)
=\(\frac{\left(xy+yz+zx\right)^2}{\left(xyz\right)^2}\)-\(\frac{2xyz\left(x+y+z\right)}{\left(xyz\right)^2}\)
=\(-\frac{2x+2y+2z}{xyz}\)
Cho 1/x+1/y+1/z=0(x,y,z khác 0). Tính yz/x2+xz/y2+xy/z2
Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc
Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2
Với x3y3+y3z3+z3x3=3x2y2z2 ta có:
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Vậy ....
Cho 1/x +1/y+1/z=0, tính giá trị biểu thức A= yz/x^2+ xz/y^2+xy/z^2
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\left(\dfrac{1}{z}\right)^3=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)
\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}+3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)
\(\Rightarrow\dfrac{1}{z^3}=-\dfrac{1}{x^3}-\dfrac{3}{x^2y}-\dfrac{3}{xy^2}-\dfrac{1}{y^3}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot-\dfrac{1}{z}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=3\cdot\dfrac{1}{xyz}\)
\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
\(\Rightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)
\(\Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy \(A=3\)
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!