chứng minh rằng
(77-76-75)chia hết cho 77
a) 2²⁰²² + 2²⁰²³ = 2²⁰²².(1 + 2)
= 2²⁰²².3 ⋮ 3
b) Xem lại đề
c) 7⁸ + 7⁷ - 7⁶
= 7⁶.(7² + 7 - 1)
= 7⁶.(49 + 7 - 1)
= 7⁶.55 ⋮ 55
Chứng minh rằng: 36^38+41^33 chia hết cho 77
Vì nó chia hết
Đúng 100%
Đúng 100%
Đúng 100%
chứng minh rằng 27^27+3^77 chia hết cho 82
Chứng minh rằng : A = 36^38 + 41^33 chia hết cho 77
CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này:
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1
suy ra A mod 7 = 0 hay A chia hết cho 7.
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242
Vì 242 chia hết cho 11 nên A mod 11 = 0.
Vậy A chia hết cho 7.11 =77
chứng minh rằng:36^36+77^55-2 chia hết cho 5
Đây là dạng toán nâng cao chuyên đề dấu hiệu chia hết cho 5; Cấu trúc thi chuyên thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn các em giải dạng này như sau.
A = 3636 + 7755 - 2
A = \(\overline{..6}\) + (774)13.773 - 2
A = \(\overline{..6}\) + \(\overline{..1}\)13.3 - 2
A = \(\overline{..6}\) + \(\overline{..3}\) - 2
A = \(\overline{..9}\) - 2
A = \(\overline{..7}\) không chia hết cho 5
Cho A = 7 + 72 + 73 + 74 + 75 + 76 +77 + 78 chứng tỏ tổng A chia hết cho 5. Hộ mik với ạ mik sắp thi r mà bài này cô mới gửi mik ko bt làm ai giúp mik nhanh vs ạ. C.ơn nhìu
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.40 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
Chứng minh rằng 33^6+77^55-2 chia hết cho 5
7755có tận cùng là 3
336có tận cùng là 9
nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5
Chứng minh rằng: A = 36^38 + 41^33 chia hết cho 77?
\(=36^{33+5}+41^{33}=60466176\cdot36^{33}+41^{33}\)\(=60466175\cdot36^{33}+36^{33}+41^{33}\)
\(=60466175\cdot36^{33}+\left(36+41\right)\left(36^{32}-36^{31}\cdot41+...-41^{32}\right)\)
\(=77\cdot785275\cdot36^{33}+77\cdot M\)chia hết cho 77
Chứng minh rằng số có dạng abcabc chia hết cho 77
Ta có : abcabc = abc . 1001 = abc . 77.13
Vậy số có dạng abcabc luôn chia hết cho 77 (đpcm)
Ta có:
abcabc = abc*1001.
=abc*77*13.
Mà abc;13 đều EN.
=>Tích trên chia hết cho 77.
Vậy.....
Ta có :
\(77=BCNN\left(7;11\right)\)
+) Chững minh abcabc chia hết cho 7;11
\(abcabc=abc.1000+abc=abc\left(1000+1\right)=abc.1001=abc.11.13.7\)
\(\Leftrightarrow abcabc⋮7;11\)
\(\Leftrightarrow abcabc⋮77\)
Chứng minh rằng A= 1028 + 8 chia hết cho 77