Giải pt:
\(2x^2+5x-1=7\sqrt{x^3-1}\)
Em cảm ơn ạ.
Giải pt:
\(\sqrt{2x+3}+\sqrt{x+1}=3x+\sqrt{2x^2+5x+3}-16\)
Em cảm ơn ạ.
Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134
Giải: \(\sqrt{2x+3}+\sqrt{x+1}=3x+\sqrt{2x^2+5x+3}\)
Em cảm ơn ạ.
Giải Pt:
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2-2x+2\)
Em cảm ơn ạ.
Đặt \(\sqrt{x^2+1}=t>0\)
\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)
\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)
\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))
\(\Leftrightarrow x^2+1=4x^2\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)
Giải pt:
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
Em cảm ơn ạ.
Đk \(x\ge0\)
Pt \(\Leftrightarrow\dfrac{2x+1-3x}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)
\(\Leftrightarrow\dfrac{1-x}{\sqrt{2x+1}+\sqrt{3x}}+\left(1-x\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}+1\right)=0\)
\(\Leftrightarrow1-x=0\)( vì \(\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}+1>0\) với mọi \(x\ge0\))
\(\Leftrightarrow x=1\)
Vậy S={1}
Giải pt:
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Em cảm ơn ạ.
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{2x-9}=\sqrt[3]{x-5}+\sqrt[3]{4x-3}\)
Đặt \(\sqrt[3]{3x+1}=a;\sqrt[3]{2x-9}=b;\sqrt[3]{x-5}=c;\sqrt[3]{4x-3}=d\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c+d\\\left(a+b\right)^3-3ab\left(a+b\right)=\left(c+d\right)^3-3cd\left(c+d\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+b=c+d=0\\\left[{}\begin{matrix}a+b=c+d\ne0\\ab=cd\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3+b^3=0\\a^3b^3=c^3d^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\\left(3x+1\right)\left(2x-9\right)=\left(4x-3\right)\left(x-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\x^2-x-12=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải phương trình
1. 2\(^{x^2+5x-1=7\sqrt{x^3-1}}\)
2. \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
giải theo cách đặt ẩn ạ. nhanh với ạ!!
cảm ơn nhiều ạ
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)-7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a\\\sqrt{x-1}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2-7ab=0\)
\(\Leftrightarrow\left(a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=3\sqrt{x-1}\\2\sqrt{x^2+x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=9\left(x-1\right)\\4\left(x^2+x+1\right)=x-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\)
Phương trình trở thành:
\(a+a^2-2=0\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow\sqrt{x-2}=0\)
e sửa lại câu 1 ạ: 2\(\text{x^2+5x−1=7√x3−1}\)
Giải hệ pt:
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^3+3}=4\end{matrix}\right.\)
Em cảm ơn ạ.
Bài1: giải các pt sau:
a, 3-4x+24+6x= x+27+3x
b, 5-(6-x)=4(3-2x)
c, x-(x+1)/3 = (2x+1)/5
d,(2x-1)/3 - (5x+2)/7 = x+13
Bài 2:
a, (x-1)(3x+1)=0
b, (x-5)(7-x)=0
c, ( x-1)(x+5)(-3x+8)=0
d, x(x^2 - 1 )=0
Giúp mình 2 bài này với , mình đang cần gấp , CẢM ƠN M.N ạ><
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
Giải phương trình:
\(\sqrt{3x-2}-\sqrt{x+7}=1\)
\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\)
\(\sqrt{x^2+2x+6}-\sqrt{x^2+x+2}=1\)
Giúp mình với ạ. Cảm ơn nhiều!
a) ĐK : \(x\ge\frac{2}{3}\)\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2-2\sqrt{\left(3x-2\right)\left(x+7\right)}+x+7=1\)
\(\Leftrightarrow4x+5-1=2\sqrt{3x^2+19x-14}\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\)
\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\)
\(\Leftrightarrow x^2-11x+18=0\Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
b) ĐK \(x\ge-\frac{1}{5}\)\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\Leftrightarrow14x+7+2x+3-5x-1-2\sqrt{28x^2+42x+14x+21}=0\)
\(\Leftrightarrow11x+9=2\sqrt{28x^2+56x+21}\Leftrightarrow121x^2+81+198x=112x^2+224x+84\)
\(\Leftrightarrow9x^2-26x-3=0\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{1}{9}\left(loai\right)\end{matrix}\right.\)
c) \(\sqrt{x^2+2x+6}-\sqrt{x^2+x+2}=1\)
\(\Leftrightarrow x^2+2x+6=x^2+x+2+1+2\sqrt{x^2+x+2}\)
\(\Leftrightarrow x+3=2\sqrt{x^2+x+2}\)
\(\Leftrightarrow x^2+6x+9=4x^2+4x+8\)
\(\Leftrightarrow3x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\frac{1}{3}\left(tm\right)\end{matrix}\right.\)