Đề bài : Cho A = 4+22+23+24+.......+210 . Chứng minh rằng A là lũy thừa của 2
A= 4 + 22 + 23 + ... + 22006
Chứng minh rằng A là 1 lũy thừa của cơ số 2
\(A=4+2^2+2^3+...+2^{2006}\)
\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)
Thay \(B=2^{2007}-4\) vào A, ta được:
\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)
$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.
Vậy: ...
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Lời giải:
$(2300-22):1+1=2279$
Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2.
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
hỏi nhanh đang thi
cho hỏi đi mừ
thi với thằng em đúng là thất bại khi nó là con gái
a, chứng minh rằng [abc+bca+cab] chia hết cho 11
b,cho A =1+2+22 +23+24+.....+2200.hãy viết A+1 dưới dạng 1 lũy thừa
c, cho B =3+32+33+......+32005.CMR 2B +3 là lũy thừa của
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
cho A=4+23+24+25+...+220
chứng minh rằng A là một lũy thừa của 2
\(A=4+2^3+2^4+2^5+...+2^{20}\)
\(A=2^2+2^3+2^4+2^5+...+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+2^6+...+2^{21}\right)-\left(2^2+2^3+2^4+2^5+...+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(=2^2\left(2^{19}-1\right)\)
Vậy A là một lũy thừa của 2.
#kễnh
Cho A = 1 + 2 + 2 2 + 2 3 + . . . + 2 50 . Chứng tỏ rằng: A + 1 là một lũy thừa của 2
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2
Cho A = 1 + 2 + 2 2 + 2 3 + . . . + 2 50 . Chứng tỏ rằng: A + 1 là một lũy thừa của 2.