a) có bao nhiêu cặp số nguyên ko âm thõa mãn x+y=1
b) có bao nhiêu cặp số nguyên thỏa mãn x+y=1
a ) Có bao nhiêu cặp số nguyên không âm x , y thỏa mãn x + y = 1 ?
b ) Có bao nhiêu cặp số nguyên x , y thỏa mãn x + y = 1 ?
Các bạn giải chi tiết rõ ràng nhé
a)Vì x,y ko âm =>x,y>0
=>ko tồn tại
b)Có vô số nghiệm x,y
Vd:1 và 0
-2 và 3
-3 và 4
.....
Thắng Nguyễn : x,y ko âm đâu có nghĩa là x,y > 0
Theo tớ thì có 2 cặp:
x=0 và y = 1
x=1 và y=0
A, có bao nhiêu cặp số nguyên không âm x,y thỏa mãn x+y=1
B, có bao nhiêu cặp số nguyên (x,y) thỏa mãn x+y =1
x=0 và y = 1
x=1 và y=0
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
A, 1 cặp
B, vô số cặp
Chúc bạn học giỏi
Tk cho mình nhé
Có bao nhiêu cặp số nguyên (x; y) thõa mãn |x| + 2021 |y| = 2020
ê cáo, mở chat
các bn comment cái j thế
có bao nhiêu cặp số nguyên x,y thõa mãn x.y-2x-3y=5
Giải
\(xy-2x-3y=5\)
\(\Leftrightarrow xy-3y-2x=5\)
\(\Leftrightarrow y\left(x-3\right)-2x+6=11\)
\(\Leftrightarrow y\left(x-3\right)-\left(2x-6\right)=11\)
\(\Leftrightarrow y\left(x-3\right)-2\left(x-3\right)=11\)
\(\Leftrightarrow\left(y-2\right)\left(x-3\right)=11\)
\(\Leftrightarrow\hept{\begin{cases}y-2\\x-3\end{cases}}\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau :
\(x-3\) | \(-11\) | \(-1\) | \(1\) | \(11\) |
\(y-2\) | \(-1\) | \(-11\) | \(11\) | \(1\) |
\(x\) | \(-8\) | \(2\) | \(4\) | \(14\) |
\(y\) | \(1\) | \(-9\) | \(13\) | \(3\) |
Vậy có 4 cặp số nguyên x , y thỏa mãn \(\left(-8;1\right);\left(2;-9\right);\left(4;13\right);\left(14;3\right)\)
\(xy-2x-3y=5\Leftrightarrow x\left(y-2\right)-3\left(y-2\right)=11\Leftrightarrow\left(y-2\right)\left(x-3\right)=11\)\(\Leftrightarrow\hept{\begin{cases}x-3=1\\y-2=11\end{cases}}hay\hept{\begin{cases}x-3=11\\y-2=1\end{cases}}hay\hept{\begin{cases}x-3=-1\\y-2=-11\end{cases}}hay\hept{\begin{cases}x-3=-11\\y-2=-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=13\end{cases}}hay\hept{\begin{cases}x=14\\y=3\end{cases}}hay\hept{\begin{cases}x=2\\y=-9\end{cases}}hay\hept{\begin{cases}x=-8\\y=1\end{cases}}\)
Có tất cả bao nhiêu cặp số nguyên (x, y) thỏa mãn: |x| + |y| = 1
\(\left|x\right|+\left|y\right|=1=0+1\)
TH1: \(\left\{{}\begin{matrix}\left|x\right|=0\\\left|y\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left|x\right|=1\\\left|y\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=0\end{matrix}\right.\)
Ta có: |x|+|y|=1
nên \(\left(\left|x\right|,\left|y\right|\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(0;-1\right);\left(0;1\right);\left(-1;0\right);\left(1;0\right)\right\}\)
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn |xy| + |x − y| = 1.
ta có :
x,y nguyên thì \(\left|xy\right|\text{ và }\left|x-y\right|\text{ là các số nguyên không âm nên }\orbr{\begin{cases}xy=0\\x-y=0\end{cases}}\)
với \(xy=0\Rightarrow\orbr{\begin{cases}x=0\Rightarrow y=\pm1\\y=0\Rightarrow x=\pm1\end{cases}}\)
với \(x-y=0\Rightarrow x=y=\pm1\)
vậy có 6 cập x,y nguyên thỏa mãn là (0,1) ,(0,-1), (1,0), (-1,0) ,(1,1), (-1,-1)
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn |x| + |y| < 1
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn |x| + |y| < 1. Trả lời:Có cặp (x;y).
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn x 5 = 3 y và x > y?
A. 4
B. 3
C. 2
D. 1
Đáp án cần chọn là: A
x 5 = 3 y ⇒ x . y = 5.3 = 15
Mà 15 = 5.3 = 15.1 = ( − 3 ) . ( − 5 ) = ( − 1 ) . ( − 15 ) và x,y∈Z,x > y nên (x;y)∈{(5;3),(15;1),(−3;−5),(−1;−15)}