Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Thành Vinh Thi...
Xem chi tiết
Lục Tương
Xem chi tiết
manhhtth
Xem chi tiết
nguyễn thị ngọc khánh
Xem chi tiết
XiangLin Linh
Xem chi tiết
Đỗ Tuệ Lâm
26 tháng 2 2022 lúc 7:47

đkxđ: x khác 0

\(\Leftrightarrow8.\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)+4\left(x^2+\dfrac{1}{x^2}\right)^2=x^2+8x+16\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(8.x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\right]+4\left(x^4+2+\dfrac{1}{x^2}\right)-x^2-8x-16=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(\dfrac{8x^2+1}{x}-4x^2-\dfrac{4}{x^2}\right)\right]+4x^4+8+\dfrac{4}{x^2}-x^2-8x-16=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{x\left(8x^2+1\right)}{x^2}-\dfrac{4x^2.x^2}{x^2}-\dfrac{4}{x^2}\right)+......=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{8x^3+x-4x^4-4}{x^2}\right)+...=0\)

\(\Leftrightarrow\dfrac{x^2}{x}.-\dfrac{4x^4+8x^3+x-4}{x^2}+.....=0\)

\(\Leftrightarrow-\dfrac{4x^6+8x^5+x^3-4x^2}{x^3}+\dfrac{4x^4+8+4x^2}{1}-\dfrac{x^2-8x-16}{1}=0\)

\(\Leftrightarrow......+\dfrac{x^3.\left(4x^4+8+4x^2\right)}{x^3}-\dfrac{x^3\left(x^2-8x-16\right)}{x^3}=0\)

\(\Leftrightarrow-4x^6+8x^5+x^3-4x^2+4x^7+8x^3+4x^5-x^5+8x^4+16x^3=0\)

\(\Leftrightarrow4x^7-4x^6+12x^5+8x^4+25x^3-4x^2=0\)

=> x=0 ( loại , ko tm)

Vậy pt vô nghiệm

Panda 卐
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Hoàng Hải Đăng
Xem chi tiết
daica
27 tháng 6 2016 lúc 21:54

oho

No_pvp
12 tháng 7 2023 lúc 16:34

Mày nhìn cái chóa j

Thu Thủy vũ
Xem chi tiết
Con Chim 7 Màu
13 tháng 3 2019 lúc 19:03

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

Con Chim 7 Màu
13 tháng 3 2019 lúc 19:05

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

Nguyễn Minh Chiến
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Hồng Phúc
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hồng Phúc
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)