tìm a,b,c,d
\(\frac{2003}{273}=7+\frac{1}{2+\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}}\)
Bài 1: \(\frac{2003}{273}=7+\frac{1}{2+\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}}\)
Tìm a,b,c,d. Giup mik nka. Miks sẽ tích cho bạn trả lời đúng và nhanh nhất na
THANKS
Bạn làm như sau : Biến đổi vế phải tương tự vế trái rồi tìn a,b,c,d
\(\frac{2003}{273}=7+\frac{92}{273}=7+\frac{1}{\frac{273}{92}}=7+\frac{1}{2\frac{89}{92}}=7+\frac{1}{2+\frac{1}{\frac{92}{89}}}\)\(=7+\frac{1}{2+\frac{1}{1+\frac{3}{89}}}\) rồi làm tương tự .
Mình ko biết bấm công thức nhiều phân số nên bạn thông cảm tự làm tiếp nhé
từ đó suy ra : a=1 ; b=29 ; c=1 ; d=2 đúng thì sai thì khỏi không hiểu thì cứ phản hồi
chứng minh các BĐT
1.\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{b+d}{d+a}\ge4\)với a,b,c,d >0
2.\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+d}+\frac{1}{2c+d+a}+\frac{1}{2d+a+b}\right)\)
3.\(\frac{1}{a^4+b^4+c^4}+\frac{2}{a^2b^2+b^2c^2+c^2a^2}\ge\left(\frac{3}{a^2+b^2+c^2}\right)^2\\ \)với a,b,c>0
4.\(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)vói x,y t/m\(\frac{2}{3}< x< \frac{13}{2}\)
a) \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)= ?
b) Tìm các STN a, b, c, d (khác nhau) sao cho :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
Câu 1: Cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2: Chứng minh rằng:
A= 75.(42004+42003+.....+42+4+1)+25 là số chia hết cho 100
Câu 2:A= 75.(42004+42003+.....+42+4+1)+25=75.|(42005-1):3+25=25.(42005-1+1)=25.42005chia hết 100
Suy ra A chia hết cho 100
CHÚC BẠN HỌC TỐT NHÉ !!!!!!!!!
Câu 1:
Vậy \(M=4;M=-4.\)
Chúc bạn học tốt!
Bài 1: Cho a,b,c là số nguyên dương. Chứng tỏ s không là số tự nhiên :
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Bài 2 : Tìm các số tự nhiên a,b,c sao cho:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
giai các phương trình sau:
a,\(\frac{1-x}{2013}=1+\frac{2-x}{2012}-\frac{x}{2014}\)
b,\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
c,\(\frac{x-a-b}{c}+\frac{x-b-c}{a}+\frac{x-a-c}{b}=3\)
d,(x+3)4 + (x+5)4=16
e,x4+ 3x3 - 7x2- 27x-18=0
f,\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(30+\frac{12}{10+\frac{5}{2003}}\) \(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+...}}}\)
Dựa vào kết quả tings được ở biểu thức trên, timd a,b,c,d... Tìm đến bao giờ không tìm dc nữa.
1 . Cho các số nguyên dương a , b , c ,d thỏa mãn :
\(b=\frac{a+c}{2}và\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
CMR : a , b , c , d có thể lập thành 1 tỉ lệ thức .
2. Tìm x , y biết :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Bài giải
1 Vì : \(b=\frac{a+c}{2}\)
=> 2b = a+c (1)
\(Vì\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)=>\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)=\frac{b+d}{2bd}\)
=> 2bd = c .(b+d) (2)
Vì : 2b = a + c
=> 2bd = b .( a +c )
c.(b+d) = d.(a + c )
\(=>\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
=> \(\frac{c}{d}=\frac{a}{b}\)
Vậy a , b , c , d có thể lập thành một tỉ lệ thức ( đpcm )
2. Áp dụng t/c của dãy tí số bằng nhau , ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
=> 12=6x
=> x= 12 : 6
=> x = 2
Thay số vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{5}{5}=1\)
=> 3y - 2 = 7 . 1 = 7
=> 3y = 7 + 2 = 9
=> y = 3
Vậy : x = 2
y = 3
Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)(T/C)
\(\Rightarrow6x=12\)
\(\Rightarrow\)x=2
Thay x=2 vào đề ta có:
\(\frac{2\cdot2+1}{5}\)=\(\frac{3y-2}{7}\)=1
\(\Rightarrow3y-2=7\)
3y=9
y=3
Vậy x=2;y=3