Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo My
Xem chi tiết
Nguyễn Đức Thọ
7 tháng 11 2016 lúc 20:21

Bạn làm như sau : Biến đổi vế phải tương tự vế trái rồi tìn a,b,c,d

\(\frac{2003}{273}=7+\frac{92}{273}=7+\frac{1}{\frac{273}{92}}=7+\frac{1}{2\frac{89}{92}}=7+\frac{1}{2+\frac{1}{\frac{92}{89}}}\)\(=7+\frac{1}{2+\frac{1}{1+\frac{3}{89}}}\) rồi làm tương tự .

Mình ko biết bấm công thức nhiều phân số nên bạn thông cảm tự làm tiếp nhé 

từ đó suy ra : a=1 ; b=29 ; c=1 ; d=2 đúng thì sai thì khỏi không hiểu thì cứ phản hồi

Sakura Kinomoto
Xem chi tiết
Lê Minh Quân
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 17:55

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

tthnew
16 tháng 8 2019 lúc 18:30

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

Nghĩa Dương
Xem chi tiết
UNI5
9 tháng 12 2019 lúc 21:02

Câu 2:A= 75.(42004+42003+.....+42+4+1)+25=75.|(42005-1):3+25=25.(42005-1+1)=25.42005chia hết 100

Suy ra A chia hết cho 100

CHÚC BẠN HỌC TỐT NHÉ !!!!!!!!!

Khách vãng lai đã xóa
Vũ Minh Tuấn
9 tháng 12 2019 lúc 21:38

Câu 1:

Vậy \(M=4;M=-4.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Thị Thanh Nga
Xem chi tiết
mynameisnga
Xem chi tiết
Đặng Vi Linh
Xem chi tiết
Thái Minh Hà
Xem chi tiết
Phùng Khánh Linh
17 tháng 10 2016 lúc 18:17

                                               Bài giải

1  Vì : \(b=\frac{a+c}{2}\)     

=> 2b = a+c                        (1)

\(Vì\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)=>\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)=\frac{b+d}{2bd}\)  

=> 2bd = c .(b+d)                          (2)

Vì :  2b = a + c

=> 2bd = b .( a +c )

       c.(b+d) = d.(a + c )

\(=>\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

=>    \(\frac{c}{d}=\frac{a}{b}\)

Vậy a , b , c , d có thể lập thành một tỉ lệ thức ( đpcm )

2.     Áp dụng t/c của dãy tí số bằng nhau , ta có :

         \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>  12=6x

=> x= 12 : 6

=> x = 2

Thay số vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{5}{5}=1\)

   => 3y - 2 = 7 . 1 = 7

  => 3y = 7 + 2 = 9

  => y                = 3

Vậy  : x = 2

          y = 3

Phạm Nguyễn Tất Đạt
17 tháng 10 2016 lúc 18:00

Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)(T/C)

\(\Rightarrow6x=12\)

\(\Rightarrow\)x=2

Thay x=2 vào đề ta có:

\(\frac{2\cdot2+1}{5}\)=\(\frac{3y-2}{7}\)=1

\(\Rightarrow3y-2=7\)

3y=9

y=3

Vậy x=2;y=3

 

Phùng Khánh Linh
17 tháng 10 2016 lúc 18:01

quá dễ ! coi nè @Thái Minh Hà