Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Nao Tomori
Xem chi tiết
GPSgaming
24 tháng 1 2017 lúc 20:11

n = 1 ta thấy thảo mãn

Nếu \(n\ge2\)thì \(n^{1988}+n^{1987}+1>n^2+n+1\)

Mặt khác \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)

Nên \(n^2+n+1\)|\(n^{1988}+n^{1987}+1\)

Vậy \(n^{1988}+n^{1987}+1\)là hợp số

GPSgaming
24 tháng 1 2017 lúc 20:12

thoả mãn ko phải thảo mãn

Lê Hồng Ngọc
Xem chi tiết
Lê Hồng Ngọc
12 tháng 8 2015 lúc 12:16

Các bạn giải nhanh giúp mình nhé !

đỗ ngọc ánh
22 tháng 10 2017 lúc 14:01

a) x=y=0

b) n bằng 0

Trần Quyền linh js
22 tháng 10 2017 lúc 14:02

câu a    x,y cùng bằng 0

câu b    n thuộc rỗng

Thức Vương
Xem chi tiết
Đào Anh Tiến
22 tháng 10 2017 lúc 14:18

n=1 nha bạn k cho mình nha

Võ Thị Quỳnh Giang
22 tháng 10 2017 lúc 20:31

ta có : \(A=n^{1988}+n^{1987}+1\)

\(\Rightarrow A=n^2\left[\left(n^{662}\right)^3-1\right]+n\left[\left(n^{662}\right)^3-1\right]+\left(n^2+n+1\right)\)

mà \(\left(n^{662}\right)^3-1⋮\left(n^3-1\right)\)và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\Rightarrow n^3-1⋮\left(n^2+n+1\right)\)

nên \(\left(n^{662}\right)^3-1⋮\left(n^2+n+1\right)\)

\(\Rightarrow A⋮n^2+n+1\)

Mặt khác : A là số nguyên tố 

=>\(\orbr{\begin{cases}n^2+n+1=1\\n^2+n+1=n^{1988}+n^{1987}+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}n\left(n+1\right)=0\\n^2+n=n^{1986}\left(n^2+n\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}n=0;n=-1\\n\left(n+1\right)\left(n^{1986}-1\right)=0\end{cases}}\)

=> \(n\left(n+1\right)\left(n^{1986}-1\right)=0\) vì n nguyên dương

\(\Rightarrow n^{1986}-1=0\Rightarrow n=1\) (thỏa mãn)

thử lại : thay n=1 vào A ta đc : A= 1+1+1=3 là số nguyên tố

Vậy n=1 thì A là số nguyên tố

Phan Thanh Tịnh
Xem chi tiết
Nguyễn Hoàng Việt
24 tháng 6 2016 lúc 19:53

∙∙ n=1n=1 ta thấy thõa mãn

Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1

Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)

Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1

Vậy n1988+n1987+1n1988+n1987+1 là hợp số

ủng hộ nhá

Võ Đông Anh Tuấn
24 tháng 6 2016 lúc 19:56

∙" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">  ta thấy thõa mãn

n≥2" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> thì 

n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

n2+n+1|n1988+n1987+1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

n1988+n1987+1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là hợp số

Võ Đông Anh Tuấn
24 tháng 6 2016 lúc 20:02
\(n=1\)ta thấy thõa mãn

Nếu \(n\ge2\)thì \(n^{1998}+n^{1987}+1>n^2+n+1\)

Mặt khác : \(n^{1998}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)

Nên : \(n^2+n+1\)\(n^{1988}+n^{1987}+1\)

Vậy : \(n^{1998}+n^{1987}+1\)là hợp số 

Trung Nguyen
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
qwerty
24 tháng 6 2016 lúc 19:56

undefined

Nguyễn Thị Anh
24 tháng 6 2016 lúc 20:06

+) n=1 ta thấy thõa mãn

+)  thì 

Mặt khác 

Nên 

Vậy  là hợp số

 

Hạ Vy
Xem chi tiết
Phan Công Bằng
4 tháng 2 2020 lúc 17:20

+) Với \(n=1\Rightarrow B=3\) là SNT

+) Với \(n>1\Rightarrow B>3\)

Ta có: \(B=\left(n^{1988}-n^2\right)+\left(n^{1987}-n\right)+\left(n^2+n+1\right)\)

\(n^{1986}-1=\left[\left(n^3\right)^{662}-1\right]⋮n^3-1\)

\(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)

\(\Rightarrow n^{1986}-1⋮n^2+n+1\)

\(\left\{{}\begin{matrix}n^{1988}-n^2⋮n^{1986}-1\\n^{1887}-n⋮n^{1986}-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^{1988}-n^2⋮n^2+n+1\\n^{1987}-n⋮n^2+n+1\end{matrix}\right.\)

\(\Rightarrow B⋮n^2+n+1\)

\(n^2+n+1>3\forall n>1\)

=> B ko là SNT với n > 1

Vậy n = 1 (T/m)

Khách vãng lai đã xóa
Buddy
4 tháng 2 2020 lúc 17:02

ta thấy thõa mãn

+) n≥2 thì n1998+n1987+1>n2+n+1

Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)

Nên n2+n+1|n1988+n1987+1

Vậy n1988+n1987+1 là hợp số

Khách vãng lai đã xóa