Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Vy

Tìn n nguyên dương để B= \(n^{1988}+n^{1987}+1\) là số nguyên tố

Phan Công Bằng
4 tháng 2 2020 lúc 17:20

+) Với \(n=1\Rightarrow B=3\) là SNT

+) Với \(n>1\Rightarrow B>3\)

Ta có: \(B=\left(n^{1988}-n^2\right)+\left(n^{1987}-n\right)+\left(n^2+n+1\right)\)

\(n^{1986}-1=\left[\left(n^3\right)^{662}-1\right]⋮n^3-1\)

\(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)

\(\Rightarrow n^{1986}-1⋮n^2+n+1\)

\(\left\{{}\begin{matrix}n^{1988}-n^2⋮n^{1986}-1\\n^{1887}-n⋮n^{1986}-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^{1988}-n^2⋮n^2+n+1\\n^{1987}-n⋮n^2+n+1\end{matrix}\right.\)

\(\Rightarrow B⋮n^2+n+1\)

\(n^2+n+1>3\forall n>1\)

=> B ko là SNT với n > 1

Vậy n = 1 (T/m)

Khách vãng lai đã xóa
Buddy
4 tháng 2 2020 lúc 17:02

ta thấy thõa mãn

+) n≥2 thì n1998+n1987+1>n2+n+1

Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)

Nên n2+n+1|n1988+n1987+1

Vậy n1988+n1987+1 là hợp số

Khách vãng lai đã xóa

Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Yuan Kat
Xem chi tiết
Trúc Giang
Xem chi tiết
Hien Pham
Xem chi tiết
dia fic
Xem chi tiết
Mai Kim
Xem chi tiết
Nguyễn Văn Quang
Xem chi tiết