\(x^2-mx+m-1=0\)
tìm các giá trị của m để pt có 2 nghiệm x1;x2 thỏa mãn
\(\frac{1}{x_{ }1}+\frac{1}{x_{ }2}=\frac{x_{1\cdot}x_2}{2011}\)
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
cho PT\(\sqrt{x^2+mx}-\sqrt{x-2}=0\) tìm các giá trị thực của m sao cho pt có 2 nghiệm x1x2 sao cho x1+x2=3(x1x2)
ĐK: \(x\ge2\)
\(pt\Leftrightarrow x^2+mx=x-2\)
\(\Leftrightarrow x^2+\left(m-1\right)x+2=0\)
Phương trình có hai nghiệm \(\Leftrightarrow\Delta=m^2-2m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le1-2\sqrt{2}\\m\ge1+2\sqrt{2}\end{matrix}\right.\)
Theo định lí Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1.x_2=2\end{matrix}\right.\)
\(x_1+x_2=3x_1x_2\)
\(\Leftrightarrow1-m=6\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Cho pt : x^2 - 2mx + m^2 - m = 0 (1) ( m là tham số ). Tìm các giá trị của tham số m để pt (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2 + x2^2 = 4 - 3x1x2
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
mx2-(2m+1)x+m-2 = 0 .TÌM GIÁ TRỊ CỦA M ĐỂ PT CÓ NGHIỆM
bạn chịu khó gõ link này lên google nhé !
https://olm.vn/hoi-dap/detail/216323474773.html
hoang lam
ui chết gõ nhầm link r :((
Để phương trình bậc hai có nghiệm \(< =>\Delta\ge0\)
Ta có : \(\Delta=\left[\left(-2m\right)+\left(-1\right)\right]^2-4m\left(m-2\right)\ge0\)
\(< =>\left(-2m\right)^2+-4m\left(-1\right)+\left(-1\right)^2-4m^2+8m\ge0\)
\(< =>4m^2+4m+1-4m^2+8m\ge0\)
\(< =>12m+1\ge0\)\(< =>m\ge-\frac{1}{12}\)
Vậy để phương trình bậc 2 có nghiệm thì \(m\ge-\frac{1}{12}\)
Cho pt: x^2 +2(m-1)x-6m-7=0.(1)
a) Chứng minh rằng với mọi giá trị của m thì pt(1) luôn có hai nghiệm phân biệt.
b)Gọi x1,x2 là 2 nghiêm của phương trình:x^2 +2(m-1)x-6m-7=0. Tìm các giá trị của m để: x1(x1+3/2)+x2(x2+3/2x1)=15.
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
1. Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=\)3-9x
2. Cho phương trình \(mx^2-2\left(m-1\right)x+2=0\) (*)
a. Xác định các hệ số. Điều kiện để (*) là PT bậc 2
b. Giải PT khi m=1
c. Tìm m để PT có nghiệm kép.
3. Cho PT \(x^2-2\left(a-2\right)x+2a+3=0\)
a. Giải PT với a=-1
b. Tìm a để PT có nghiệm kép
4. Cho PT \(x^2-mx+m-1=0\) (ẩn x, tham số m)
a. Giải PT khi m=3
b. Chứng tỏ PT có 2 nghiệm x1, x2 với mọi m
c. Đặt A=\(x_{1^2}+x_{2^2}-6x_1x_2\) . Tính giá trị nhỏ nhất của A
5. Cho PT \(x^2+2mx-2m^2=0\). Tìm m để PT có 2 nghiệm x1, x2 thỏa mãn điều kiện x1+x2 = x1.x2
cho phương trình x^2-mx+m-1=0(m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 và thỏa mãn x1^2+x2^2=x1+x2
\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
Phương trình có hai nghiệm phân biệt :
\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)
Theo vi ét :
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)
Vậy \(m=2\)
Lời giải:
Để pt có 2 nghiệm dương thì:
\(\left\{\begin{matrix} \Delta=m^2-4(m-10)>0\\ S=m>0\\ P=m-10>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-2)^2+36>0\\ m>0\\ m>10\end{matrix}\right.\Leftrightarrow m>10\)