Cho hai số dương x,y thoax mãn:x+y=1
Tìm Min:A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Cho x,y là các số thực dương thay đổi thỏa mãn:x+y=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{18}{x^2+y^2}+\frac{5}{xy}\)
Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:
Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)
Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)
Cho các số thực dương thỏa mãn:x+y+z=3
Tìm Min \(P=\left(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\right)-\frac{2\left(xy+yz+zx\right)}{27}\)
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
\(A=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{2xy}+8xy\right)+\dfrac{3}{xy}\)
\(A\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{8xy}{2xy}}+\dfrac{3}{\dfrac{1}{4}\left(x+y\right)^2}\ge20\)
\(A_{min}=20\) khi \(x=y=\dfrac{1}{2}\)
Cho hai số dương x, y thỏa mãn x + y = 2. Tính giá trị nhỏ nhất của biểu thức
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}.\)
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Nhầm 1/x^2 + 1/y^2 >= 2/xy
=> A >= 5
khi x = y = 1 nhé
Cho x,y là hai số dương thỏa mãn xy=1. Tính GTLN của:
\(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Áp dụng bđt AM-GM ta có
\(x^4+y^2\ge2x^2y\)
\(x^2+y^4\ge2xy^2\)
\(\Rightarrow M\le\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy..........
1) Cho x, y các số dương thỏa mãn x + y + xy = 8. Tìm GTNN của biểu thức P= x2 + y2
2) Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
3) Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
Giờ bạn cần bài này nữa không
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Cho x, y là hai số thực dương thoả mãn x + y = 1. Tìm GTNN của P = \(\frac{18}{x^2+y^2}+\frac{13}{xy}\)
Ta có:
\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)
\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)
\(=18.4+4.4=72+16=88\)
Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)