Cho P là số nguyên tố P>3 cm P2-1chia hết cho 24
Cho a,b là số nguyên tố lớn hơn 3 cm a2-b2 chia hết cho 24
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
cho p là số nguyên tố lớn hơn 3. CM: p2-1 chia hết cho 24
A = p2 - 1 = (p - 1)(p + 1)
p là số nguyên tố > 3 => p lẻ => p-1; p+1 chẵn => A chia hết cho 8 với mọi p là số nguyên tố > 3 (1)
p là số nguyên tố > 3 => p = 3k+1; 3k + 2
+) p= 3k+1 => A = 3k(3k+2) chia hết cho 3
+) p = 3k+2 => A = (3k+1)(3k+3) = 3(k+1)(3k+1) chia hết cho 3
=> A chia hết cho 3 với mọi p là số nguyên tố > 3 (2)
8 và 3 là 2 số nguyên tố cùng nhau (3)
Từ (1); (2); (3) => A chia hết cho 24 với mọi p là số nguyên tố lớn hơn 3 (đpcm)
P là số nguyên tố lớn hơn 3. CM: P2-1 chia hết cho 24
Có: p2 - 1 = p2 + p - p - 1 = (p2+p) - (p+1) = p(p+1) - (p+1) = (p-1).(p+1)
p là số nguyên tố lớn hơn 3 => p-1 và p+2 là 2 số chẵn liên tiếp.=> (p-1)(p+1) \(⋮\) 8 (1)p là số nguyên tố lớn 3 => p có dạng 3k+1;3k+2Với p = 3k+1 => (p-1)(p+1) = (3k+1-1)(3k+2+1) = 3k(p+1) \(⋮\) 3 (2)
Với p = 3k+2 => (p-1)(p+1) = (p-1)(3k+2+1) = (p-1)(k+1).3 \(⋮\) 3 (3)
Từ (1)(2)(3) => p2 - 1 \(⋮\) 3;8
Mà (3;8) = 1 => p2 - 1 \(⋮\) 24
Cho p là số nguyên tố lớn hơn 3. Biết p+2 cũng là số nguyên tố. Chứng minh rằng p+1chia hết cho 6
Cho P là số nguyên tố lớn hơn 3.Biết P+2 cũng là số nguyên tố .Chứng minh P+1chia hết cho 6
Câu 1 : Cho p là số nguyên tố lớn hơn 3 . CMR (p-1)(p+1) chia hết cho 24
Câu 2 CMR nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho ...
Câu 3 : Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2009 là hợp số hay số nguyên tố .