giải phương trình
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
.
Giải phương trình:
a) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
b) \(2x^2-8x-3\sqrt{x^2-4x-5}=12\)
giải pt :
1 ) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
2 ) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
Giải phương trình
a,\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
b, \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x-22\)
c, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+8-2\sqrt{x+7}}=4\)
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}
a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?
b) Tìm giá trị nhỏ nhất của biểu thức sau: \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)
c) Giải phương trình: \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
Mình hơi bị rảnh khi trả lời cho bạn
a) bình phương 2 vế là ra
b) áp dụng câu a)
c) giải phương trình bằng phương pháp dùng bất đẳng thức, áp dụng câu a), dấu bằng xảy ra khi AB\(\ge\)0, rồi lập bảng xét dấu
a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?
b) Tìm giá trị nhỏ nhất của biểu thức sau: .M = \(\sqrt{x^2+4x+4}\) +\(\sqrt{x^2-6x+9}\)
c) Giải phương trình: \(\sqrt{4x^2+20x+25}\)+ \(\sqrt{x^2-8x+16}\)= \(\sqrt{x^2+18x+81}\)
a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)
\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)
\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)
Đẳng thức xảy ra khi \(A.B\ge0\)
b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)
Vậy minM = 5 tại \(-2\le x\le3\)
c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)
Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)
Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)
Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)
Giải các biểu thức:
a) \(\sqrt{4x^2+20x+25}\) +\(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
b) \(\sqrt{x^2-4x+5}\) + \(\sqrt{x^2-4x+8}\) + \(\sqrt{x^2-4x+9}\) = 3 + \(\sqrt{5}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b) \(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)
giải phương trình
a.\(^{\sqrt{25x^2}=10}\)
b. \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
c.\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+16x+81}\)
d.\(\sqrt{x^2-25}-\sqrt{x-5}=0\)
\(a,\sqrt{25x^2}=10\)
\(\sqrt{\left(5x\right)^2}=10\)
\(5x=10\)
\(x=2\)
b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\) ĐKXĐ: x>=1,x>=-1
<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
<=>x=+-4
câu b:
chuyển 2 căn 15 sang vế phải ,
sau đó bình phương cả 2 vế lên thì ta mất dấu căn ở căn (4(x^2-1)) từ đó giải ra ptr như bình thường , ra 2 nghiệm là 4 và -4
câu c :
bình phương cả hai vế lên , vế trái dùng hằng đẳng thức phân tích dần ra là đc
câu d
chuyển căn x-5 sang vế phải rồi bình phương hai vế, mất dấu căn thì giải ptrinh như bth thôi
:P lười làm full bài