Những câu hỏi liên quan
Angela jolie
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 11:54

Lời giải:

Do $x,y,z\in [0;1]$ nên $1+yz; 1+xz; 1+xy\geq 1+xyz$

$\Rightarrow \frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\leq \frac{x+y+z}{1+xyz}$

Ta cần chứng minh: $\frac{x+y+z}{1+xyz}\leq 2$

$\Leftrightarrow x+y+z\leq 2+2xyz(*)$

Thật vậy:

$x,y\in [0;1]\Rightarrow (x-1)(y-1)\geq 0$

$\Leftrightarrow xy+1\geq x+y\Rightarrow xy+z+1\geq x+y+z(1)$
Mà:

$xy+z+1-(2+2xyz)=xy+z-2xyz-1=xy(1-z)-(1-z)-xyz=(xy-1)(1-z)-xyz\leq 0$ do $0\leq x,y,z\leq 1$)

$\Rightarrow xy+z+1\leq 2+2xyz(2)$

Từ $(1);(2)\Rightarrow x+y+z\leq 2+2xyz$

BĐT $(*)$ đc chứng minh nên ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,0)$ và hoán vị

Bình luận (0)
tthnew
1 tháng 7 2020 lúc 20:09

Trâu bò nhưng bù lại là đơn giản:

\(VP-VT\equiv f\left(x,y,z\right)=f\left(\frac{a}{a+1},\frac{b}{b+1},\frac{c}{c+1}\right)\ge0\)

Bất đẳng thức cuối quy đồng lên sẽ thấy điều hiển nhiên ;)

Bình luận (0)
Lê Văn Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
20 tháng 8 2017 lúc 22:05

áp dụng bđt schwarts ta có:

\(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge\frac{\left(1+1+1\right)^2}{2x+2y+2z+3}\ge\frac{9}{7}\)

\(\Rightarrow1-\frac{1}{2x+1}+1-\frac{1}{2y+1}+1-\frac{1}{2z+1}\le3-\frac{9}{7}\)

\(\Rightarrow\frac{2x}{2x+1}+\frac{2y}{2y+1}+\frac{2z}{2z+1}\le\frac{12}{7}\)

\(\Rightarrow\frac{x}{2x+1}+\frac{y}{2y+1}+\frac{z}{2z+1}\le\frac{6}{7}\left(Q.E.D\right)\)

dấu = xảy ra khi x=y=z=2/3

Bình luận (0)
Nguyễn Phạm Châu Anh
Xem chi tiết
Đinh Đức Hùng
22 tháng 3 2017 lúc 18:02

Sửa lại đề :

Cho \(0\le x\le y\le z\le1\) CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)

Giải :

Từ \(x\le y\le1\Rightarrow\hept{\begin{cases}x-1\le0\\y-1\le0\end{cases}\Rightarrow\left(x-1\right)\left(y-1\right)\ge0}\)

\(\Rightarrow xy-x-y+1\ge0\Rightarrow xy+1\ge x+y\)

\(\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\)\(\left(x\ge0\right)\)

Mà \(\frac{z}{x+y}\le\frac{2z}{x+y+z}\) nên \(\frac{z}{xy+1}\le\frac{2z}{x+y+z}\left(1\right)\)

CM tương tự ta cũng có :\(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\left(3\right)\end{cases}}\)

Cộng các vế của (1) ; (2) ; (3) lại ta được :

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)

\(\)

Bình luận (0)
Nguyễn Thị Mai Anh
Xem chi tiết
Vo Trong Duy
Xem chi tiết
Winkies
Xem chi tiết
KWS
28 tháng 1 2019 lúc 17:28

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

Bình luận (0)
Tran Le Khanh Linh
16 tháng 5 2020 lúc 20:54

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Nguyen Duy Dai
Xem chi tiết
Hoàn Minh
Xem chi tiết
An Vy
Xem chi tiết
Girl
8 tháng 7 2019 lúc 15:54

\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)

\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)

Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:

\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)

\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)

Bình luận (0)