cho P= 3/(1.2)^2 +5/ (2.3)^2 +7/(3.4)^2 +...+ 4033/(2016.2017)^2 . Chứng minh rằng P >1
CMR: A=3/(1.2)^2+5/(2.3)^2+7/(3.4)^2+...+4033/(2016.2017)^2<1
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)
\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)
\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)
\(=1-\dfrac{1}{2017^2}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
Vậy...
Cho P=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4033}{\left(2016.2017\right)^2}\)
Chứng minh rằng P<1
P=3 /1.22 +1/22.32+...+4033/20162.20172
P=1/1 -1/22 +1/22 -1/52 +...+1/20162 - 1/20172
P=1-1/20172 <1
vậy p<1
cho P= \(\frac{3}{\left(1.2\right)^2}\) +\(\frac{5}{\left(2.3\right)^2}\) +\(\frac{7}{\left(3.4\right)^2}\) +...+ \(\frac{4033}{\left(2016.2017\right)^2}\)
chứng minh P<1
\(P=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.....+\frac{4033}{\left(2016.2017\right)^2}\)
\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{2017^2-2016^2}{2016^2.2017^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{2016^2}-\frac{1}{2017^2}\)
\(=1-\frac{1}{2017^2}< 11\) (đpcm)
Bài này trong đề thi học kì 2 môn Toán lớp 6 trường Amsterdam năm 2016-2017 này. Mình 10 luôn hehe
GẤP ... GẤP ... GẤP CÁC BẠN
P = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4003}{\left(2016.2017\right)^3}\)
Chứng minh rằng : P < 1
A = \(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\)
Chứng minh rằng : 4A < \(10111^6\)
cho biểu thức A=(1/1.2+1/2.3+1/3.4+1/4.5+........+ 1/2016.2017): 2 Hãy so sánh A với 1/2
Cho biểu thức B= 1/31+1/32+1/33+1/34+........+1/60. Hãy chứng tỏ 3/5<B<4/5
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)
Chứng minh rằng: \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.................+\frac{4031}{\left(2015.2016\right)^2}< 1\)
Tìm số hữu tỉ x biết
1.2-1/2!+2.3-1/3!+3.4-1/4!+.....+2016.2017-1/2017!
Cho A= 1/2+1/2^2+1/2^3+1/2^4+1/2^100. Chứng minh rằng A<1
Cho B=2/1.2+2/2.3+2/3.4+...+2/99.100. chứng minh rằng c<2
A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -
( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))
\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1
Vậy: A < 1
\(\frac{1}{2}\)
B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )
= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)
\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2
Vậy: B < 2
Chứng minh rằng 1.2-1/2! + 2.3-1/3! + 3.4-1?4! +...+ 99.100-1/100! <2