tìm các nghiệm nguyên của pt:
5x - 2007y = 1 với 1 < x< 3000
Tìm tất cả các cặp số tự nhiên ( x;y ) thỏa mãn 5x - 2007y = 1 và x < 3000
Tìm các số nguyên x,y biết : 5x-2007y=1
Các bạn giúp mình nhé mình cần gấp lắm
cho pt ẩn x m^2+4m-3=m^2+x
a)giải pt với m =2
b)tìm các giá trị của m để pt có 1 nghiệm duy nhất
c)tìm các giá trị nguyên của m để pt có nghiệm duy nhất là số nguyên
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
1.Phương trình x^2 +5x -m -3 có nghiệm kép khi?
2.Cho pt x^2 - 5x+m-3 =0 (1)
1)Tìm m để pt có nghiệm kép. Tìm nghiệm kép đó.
2)Với giá trị nào của m thì phương trình (1) có 2 nghiệm phân biệt.
Giúp với ạ.
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)
cho pt: ( 2m + 1 ) x - 4m + 7 = 0
a, tìm giá trị của m để pt nhận x = -2/3 là nghiệm
b, tìm giá trị nguyên của m để pt (1) có nghiệm nguyên duy nhất
giúp em với ạ em cảm ơn trước
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm pt nghiệm nguyên \(x^2y - 5x^2 - xy - x + y - 1 = 0\)
PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)
Với y=5 thì ta không tìm được x thỏa mãn
Với \(y\ne5\), ta có
\(\Delta=-3y^2+26-19\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)
Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Cho pt bậc hai 2 ẩn x, m là tham số: x2 + mx + 2m - 4 = 0 (1)
a/ Chứng minh pt luôn có nghiệm với mọi giá trị của m
b/ Gọi x1, x2 là 2 nghiệm của pt (1). Tìm các gt nguyên dương của m để bt
A=x1x2/x1+x2 có giá trị nguyên
GIẢI DÙM MÌNH VỚI
a) Ta có:
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)
Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m
Vậy phương trình luôn có nghiệm với mọi m
b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)
Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)
Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4
Mà m nguyên dương nên m = 1; 2; 4
Vậy m = 1; 2; 4
a,\(\Delta=m^2-4.\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)
=> pt luôn có nghiệm
b,theo hệ thức viét ta có:
\(x_1x_2=2m-4;x_1+x_2=-m\)
\(\Rightarrow A=\frac{2m-4}{-m}=-2+\frac{4}{m}\)
\(\Rightarrow m\inƯ\left(4\right)\)