Cho a,b,c>0 và abc=1 tìm GTNN CỦa P=(a+1)(b+1)(c+1)
Cho a,b,c>0 và abc=1. Tìm GTNN của biểu thức sau:
P=(a+1)(b+1)(c+1)
Nhanh nha mk cần gấp
Áp dụng BĐT Cauchy ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\) \(\ge\)\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Vậy Min P = 8 <=> a = b = c = 1
Cauchy :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Đẳng thức xảy ra <=> a = b = c = 1
Áp dụng BĐT Cauchy, ta có:
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c>0 và a+b+c=1. tìm GTNN của : \(M=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
cho a,b,c >0 và a+b+c=1/abc.
Tìm GTNN: P= (a+b)(a+c)
Cho a,b,c là các số thực thuộc khoảng (0:1) thỏa mãn abc=(1-a)(1-b)(1-c)
Tìm GTNN của P=a+b+c\(+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a,b,c >0 thỏa mãn a+b+c = 1/abc . Tìm GTNN của P=(a+b)(a+c)
Ta có: (a+b)(a+c)=a2+ac+ab+bc=a(a+b+c)+bc=1/bc+bc
Mà b,c >0 nên 1/bc+bc>=2(tổng hai số nghịch đảo)
=> P>=2
Vậy GTNN của P=2
Cho a, b, c>0; a+b+c=1.Tìm GTNN của \(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\)
Do a,b,c có vai trò hoán vị vòng quang.Ta dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{9abc}\right)+\frac{8}{9abc}\)
\(\ge\frac{4}{a^2+b^2+c^2+9abc}+\frac{8}{9abc}=\frac{4}{a^2+b^2+c^2+9abc}+\frac{4}{9abc}+\frac{4}{9abc}\)
\(\ge\frac{\left(2+2+2\right)^2}{a^2+b^2+c^2+27abc}=\frac{36}{a^2+b^2+c^2+27abc}\) (Cauchy-Schwarz dạng Engel)
\(\ge\frac{36}{a^2+b^2+c^2+\left(a+b+c\right)^3}=\frac{36}{a^2+b^2+c^2+1}+\frac{a^2+b^2+c^2+1}{36}-\frac{a^2+b^2+c^2+1}{36}\)(Cô si kết hợp giả thiết a + b + c = 1)
\(\ge2-\frac{a^2+b^2+c^2+1}{36}\)
Tới đây bí:v
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0,a+b+c=1. tìm gtnn của A=1/abc+1/a^2+b^2+c^2
mọi ng ơi giúp mình, nhớ làm chi tiết nhé
Cho a+b+c=3 và a, b, c>0. Tìm GTNN của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)