Cho -3a > -5a chứng minh a là số dương
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
a) Cho a,b số tự nhiên thỏa mãn điều kiện 5a + 2b chia hết cho 7 chứng minh 3a + 4b chia hết cho 7
b) cho a,b số tự nhiên. Chứng minh (5a+3b) và (13a + 8b) cùng là bội của 2017 thì a, b cũng là bội của 2017
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
cho số thực a chứng minh rằng: a2 +3a+4≥ 5a+3
\(\)
đây nhé bn
\(a 2 + 3 a + 4 ≥ 5 a + 3 ⇔ a 2 − 2 a + 1 ≥ 0 ⇔ ( a − 1 ) 2 ≥ 0\)
Số a là số âm hay dương nếu: -3a > -5a?
Ta có: -3 > -5 (***). Để có bất đẳng thức cùng chiều là -3a > -5a ta phải nhân cả hai vế của (***) với số dương. Vậy a là số dương.
cho số thực a chứng minh rằng: a2 +3a+4≥ 5a+3
Giải cho một bn của mik.
\(a^2+3a+4\ge5a+3\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\) ( true )
cho M=a^2 + 3a +1 với a là số nguyên dương .Chứng minh mọi ước của M đều là số lẻ
Giả sử a là số chẵn thì a^2 là chẵn, 3a cũng là số chẵn => M = a^2+3a+1 là số lẻ ( Vì chẵn + chẵn +lẻ = lẻ ) => Mọi ước của M đều phải lẻ
Giả sử a là số lẻ thì a^2 là lẻ, 3a cũng là số lẻ => M = a^2+3a+1 là số lẻ ( Vì lẻ + lẻ + lẻ = lẻ ) => Mọi ước của M đều phải lẻ
Với a là số thực dương tùy ý, ln(5a) - ln(3a) bằng
A. .
B. .
C. .
D. .
Cho a,b là các số nguyên dương thỏa mãn a + 2021b \(⋮\) 2022. Chứng minh rằng phân số \(\dfrac{2a+2020b}{3a+2019b}\) không là phân số tối giản.
Ta có:
2a + 2021b = 2022a + b - a
Vậy phân số ban đầu có thể viết lại dưới dạng:
(2022a + b = a + 20206)/(3a + 2019b) -
= (2022a + b)/(3a + 2019b) + (20206
- a)/(3a + 2019b)
= 674 + (20206 - a)/(3a + 2019b)
Vì a, b là các số nguyên dương nên ta có:
0 < (20206 - a)/(3a + 2019b) < 1
Vậy phân số ban đầu không tối giản vì nó có thể viết dưới dạng tổng của một số nguyên và một phân số có tử số nhỏ hơn mẫu số.
Chứng minh rằng nếu (5a+4b+3c) là số lẻ thì (3a+2b+7c) cũng là số lẻ