Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Lý Thị Hồng Anh
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Nguyễn thành Đạt
13 tháng 9 2023 lúc 23:01

Ta có : \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)

Xét : \(\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{3}{4}.\left(x-y\right)^2+\dfrac{5}{4}.\left(x+y\right)^2}\)

\(\ge\sqrt{\dfrac{5}{4}.\left(x+y\right)^2}=\dfrac{\sqrt{5}}{2}.\left(x+y\right)\)

\(CMTT:\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}.\left(y+z\right)\)

                \(\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}.\left(x+z\right)\)

Do đó : \(P\ge\dfrac{\sqrt{5}}{2}.\left(x+y+y+z+z+x\right)=\dfrac{2\sqrt{5}.\left(x+y+z\right)}{2}\)

\(\Rightarrow P\ge\sqrt{5}.\left(x+y+z\right)\)

Ta có : BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

Mà : \(xy+yz+zx=3\)

\(\Rightarrow\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow x+y+z\ge3\)

\(\Rightarrow P_{min}=3\sqrt{5}\)

Dấu bằng xảy ra : \(\Leftrightarrow x=y=z=1\)

Ngô Hồng Thuận
Xem chi tiết
Đoàn Thị Huyền Đoan
1 tháng 8 2016 lúc 7:25

B=3,406938828

Ngô Hồng Thuận
Xem chi tiết
Nguyễn Tuấn
31 tháng 7 2016 lúc 20:32

xcănx=cănx mũ 3

y căn y = căn y mũ 3

Lê Thu Hiền
Xem chi tiết
An Thy
20 tháng 6 2021 lúc 9:02

a) ĐKXĐ: \(x,y\ge0\)

\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)

b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)

phan anh thư
Xem chi tiết
Xyz OLM
9 tháng 7 2023 lúc 9:29

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

Ngọc Ngô
Xem chi tiết
alibaba nguyễn
20 tháng 9 2019 lúc 9:12

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

Nguyễn Linh Chi
23 tháng 9 2019 lúc 14:53

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

tth_new
23 tháng 9 2019 lúc 18:37

Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)