tìm các số nguyên dương a,b sao cho 8a (a+b) +8=17b
1) Cho A= 1/101 + 1/103 + 1/103 + ... + 1/200 . CMR a) A > 7/12 ; b) A > 5/8
2) Tìm 3 số nguyên dương khác nhau sao cho tổng các nghịch đảo của chúng bwangd 1
3) Tìm các số nguyên dương x,y:
a) 1/x + y/2 = 5/8
b) 1/x +1/y = 1/2
a) Tìm các số nguyên dương a sao cho a = 10 ; a = 1 ; a = 4 ; a = − 2
b) Tìm các số nguyên âm a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
c) Tìm các số nguyên a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
tìm số nguyên tố p và các số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
tìm các số nguyên dương a,b sao cho (a^2+b^2)/(b^2-a) và (b^2+a)/(a^2-b) đều là số nguyên
a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)
tìm các số nguyên dương a,b,c sao cho a+b^2+c=a^2 bc
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\dfrac{ab\left(a+b\right)}{ab+2}\) là số nguyên
Tìm các số nguyên dương a, b, c sao cho: a.b.c = a+b+c