Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyện thị bích thủy
Xem chi tiết
HT.Phong (9A5)
6 tháng 10 2023 lúc 12:10

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

Vũ Dương Phương Linh
Xem chi tiết
 Mashiro Shiina
14 tháng 7 2017 lúc 22:05

\(B=\dfrac{1+2+2^2+2^3+.....+2^{2008}}{1-2^{2009}}\)

Đặt \(S=1+2+2^2+2^3+....+2^{2008}\)

\(2S=2\left(1+2+2^2+2^3+....+2^{2008}\right)\)

\(2S=2+2^2+2^3+2^4+.....+2^{2009}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(S=2^{2009}-1\)

Thay S vào B ta có:

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

Nam Nguyễn
14 tháng 7 2017 lúc 22:51

\(B=\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}.\)

Đặt phần tử của \(B\)\(C\Rightarrow B=\dfrac{C}{1-2^{2009}}.\)

Ta có:

\(C=1+2+2^2+2^3+...+2^{2008}.\)

\(2C=2\left(1+2+2^2+2^3+...+2^{2008}\right).\)

\(2C=2+2^2+2^3+2^4+...+2^{2009}.\)

\(2C-C=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right).\)

\(C=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3+2^3\right)+...+\left(2^{2008}-2^{2008}\right)+\left(2^{2009}-1\right).\)

\(C=0+0+0+...+0+\left(2^{2009}-1\right).\)

\(C=2^{2009}-1.\)

Thay \(C\) vào \(B.\)

\(\Rightarrow B=\dfrac{C}{1-2^{2009}}=\dfrac{2^{2009}-1}{1-2^{2009}}=-1.\)

\(\Rightarrow B=-1.\)

Vậy.....

~ Học tốt!!! ~

Trung Vũ
Xem chi tiết
Nguyễn Trí Nghĩa
23 tháng 5 2021 lúc 17:11

\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)

Đặt \(N=1+2+2^2+..........+2^{2008}\)

\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)

2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)

\(N=2^{2009}-1\)

Thay N vào B được

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

Vậy .........................

Chúc bn học tốt

Giải:

\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\) 

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2009}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\) 

\(A=2^{2009}-1\) 

\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

Phan thi khanh huyen
Xem chi tiết
nguyễn hồng nhung
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 22:34

a) \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b) Ta có: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(\Rightarrow A=2A-A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-...-2^{2007}=2^{2008}-1\)

Akai Haruma
4 tháng 9 2021 lúc 22:36

Lời giải:
a.

$A=1+2^1+2^2+2^3+....+2^{2007}$

$2A=1.2+2^1.2+2^2.2+2^3.2+....+2^{2007}.2$

$2A=2+2^2+2^3+2^4+....+2^{2008}$

b.

$A=2A-A=(2+2^2+2^3+2^4+...+2^{2008})-(1+2+2^2+...+2^{2007})$

$=2^{2008}-1$ (đpcm)

P/s: Lần sau bạn chú ý viết đề bằng công thức toán.

Nguyễn Phương Linh
Xem chi tiết
Monkey D Luffy
13 tháng 12 2015 lúc 18:06

7+ 7+ 72 + 73 + ... + 72008 + 72009

= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009

=8 + 8 . 73 + ... + 8 . 72009

= 8 . (1 + 73 + ... + 72009)

Vậy tổng trên chia hết cho 8

Nguyễn Mai Phương
13 tháng 10 2016 lúc 20:37

Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 

(=)  ( 1 + 7 + 72 + 7 + ...... + 72008 + 72009 

(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )

(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )

(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )

phạm nguyễn thanh xuân
22 tháng 10 2017 lúc 11:12

mik giống Nguyễn Thế Mãnh

Võ Mạnh Tiến
Xem chi tiết
Phạm Đào Nhung Trang
1 tháng 4 2022 lúc 14:39

3 nhân 2/3 bao nhiêu

Khách vãng lai đã xóa
huynh nhatminh
Xem chi tiết
phan ngọc khánh vy
Xem chi tiết
Nguyễn Cường Thịnh
5 tháng 3 2020 lúc 22:15

câu bên dưới mik nhầm

Khách vãng lai đã xóa