cho cả biểu thức A =\(\frac{2x-1}{x+3}\)va B =\(\frac{2}{x^2-9}\)
a;tìm x đểA= \(\frac{3}{2}\)
b; tìm x để \(\frac{A}{B}\)< \(^{x^2+5}\)
1, Cho biểu thức:
A=\(\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)
a, Tìm điều kiện xác định và rút gọn A
b,Tính giá trị biểu thức A khi x=\(\frac{9}{4}\)
c, Tìm tất cả các giá trị của x để A< 1
2,Cho biểu thức:
A=\(\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\) với x\(\ne\pm3\)
a, Rút gọn biểu thức A
b,Tìm x để A <2
c,Tìm x để A nguyên
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
9, Cho biểu thức sau :
A=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\) ) : \(\frac{2x+1}{x^2+2x+1}\)
a, Rút gọn biểu thức A.
b, Tính giá trị của A khi x=\(\frac{1}{2}\)
a/\(A=\left(\frac{x+1}{x^2-1}+\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right).\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\left(\frac{x+1}{x^2-1}+\frac{x}{x^2-1}\right).\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{2x+1}{x^2-1}.\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b/Thay số vào tính
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên cảu x để biếu thức A nhận giá trị nguyên
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Câu 1:
\(P=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ac}+\sqrt{c\left(a+b+c\right)+ab}\)
\(P=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(P\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=\frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}\)
\(=\frac{\left(2a+a+a\right)+\left(2b+b+b\right)+\left(2c+c+c\right)}{2}\)
\(=\frac{4\cdot\left(a+b+c\right)}{2}=\frac{4\cdot2}{2}=4\)
Vậy \(maxP=4\Leftrightarrow a=b=c=\frac{2}{3}\)
Bài 1:Cho biểu thức A=\(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x-4}{3-x}\)
a, Rút gọn biểu thức A
b,Tìm x để A nhận giá trị là số nguyên
ĐKXĐ: x≠2;x≠3
a) Ta có: \(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x-4}{3-x}\)
\(=\frac{2x-9}{x^2-2x-3x+6}-\frac{x+3}{x-2}+\frac{2x-4}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x-4\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2\left(x^2-4x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-8x+8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{-6x+8+x^2}{\left(x-2\right)\left(x-3\right)}=\frac{x^2-4x-2x+8}{\left(x-2\right)\left(x-3\right)}=\frac{x\left(x-4\right)-2\left(x-4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x-4}{x-3}\)
\(=\frac{x-3-1}{x-3}=1-\frac{1}{x-3}\)
b) Để A nhận giá trị là số nguyên thì \(1-\frac{1}{x-3}\) nhận giá trị nguyên
⇒\(\frac{1}{x-3}\) nhận giá trị nguyên
\(\Rightarrow1⋮x-3\)
hay \(x-3\inƯ\left(1\right)\)
\(\Rightarrow x-3\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{4;2\right\}\)
mà x=2 là không thỏa mãn đkxđ
nên x=4
Vậy: Khi x=4 thì biểu thức \(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x-4}{3-x}\) nhận giá trị là số nguyên
1. Cho biểu thức A= \(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}...\)
a, Tìm đkxđ và rút gọn.
b, Tìm ác giá trị nguyên của x để gia strij của biểu thức A là số nguyên.
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)
Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên
=> 7 ⋮ x - 3
=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn
Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên
(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.
( ác ) là từ ( các )
(gia strij) là từ ( giá trị )
Cho biểu thức
\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\) với x khác + - 3
a)Rút gon biểu thức A
b)Tìm x để A<2
c)Tìm x nguyên để A nguyên
a) \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x^2-6x}{\left(x+3\right)\left(x-3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x^2-13x}{x^2-9}\)
\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
a) ĐK : x ≠ ±3
\(=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{x-3}\)
b) Để A < 2
=> \(\frac{3x}{x-3}< 2\)
<=> \(\frac{3x}{x-3}-2< 0\)
<=> \(\frac{3x}{x-3}-\frac{2x-6}{x-3}< 0\)
<=> \(\frac{3x-2x+6}{x-3}< 0\)
<=> \(\frac{x+6}{x-3}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+6>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-6\\x< 3\end{cases}}\Leftrightarrow-6< x< 3\)
2. \(\hept{\begin{cases}x+6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -6\\x>3\end{cases}}\)( loại )
Vậy -6 < x < 3
1. Cho biểu thức
E= \(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
a, tìm ĐKXĐ và RG
b, Tính E với x=\(\frac{1}{2}\)
c, Tìm x biết E= 2
2. cho biểu thức
M= \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a, RG
b. tính x để M = \(\frac{-1}{2}\)
3, cho biểu thức
A= \((\frac{1}{x^2-x}+\frac{1}{x-1}):\frac{x+1}{x^2-2x+1}\)
a, RG
b. Tìm A khi |x| = 2
c. Tìm x biết A=\(\frac{2}{3}\)
d. Tìm x nguyên để A nguyên
e. Tìm GTLN của B= \(x^2.A\)
4. cho biểu thức
D=\((\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}):\frac{x^2-3x}{2x^2-x^3}\)
a, RG
b,Tính D khi |x-5| = 2
CÁC BẠN GIẢI NHANH GIÚP MIK TRONG TUẦN NÀY AK XIN CẢM ƠN HỨA SẼ TICK CHO NHA THANKS
câu 3
cho biểu thức
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)
a/ rút gọn A
b/tìm giá trị của A tại x=3 ; x=-1
c/ tìm x để A=2
câu 4
cho biểu thức \(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}\)
a/tìm điều kiện của x để giá trị của biểu thức xác định
b/rút gọn B
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)