Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HOSHIMYA ICHINGO
Xem chi tiết
Nguyễn Minh Tuyền
Xem chi tiết
Bui Dinh Quang
Xem chi tiết
Phùng Minh Quân
3 tháng 4 2018 lúc 18:07

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

Kiên-Messi-8A-Boy2k6
8 tháng 6 2018 lúc 17:37

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

Cấm khóa nick
17 tháng 4 2020 lúc 21:42

k đúng cho mk nha

Khách vãng lai đã xóa
zZz Song ngư zZz Dễ thươ...
Xem chi tiết
Kaori Miyazono
17 tháng 9 2017 lúc 18:46

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số ) 

\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)

\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)

\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)

\(A=-\frac{2015}{4028}\)

Vậy.....

ZORO
17 tháng 9 2017 lúc 18:41

-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))

-A= \(\frac{3}{4}\)\(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)

-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)

-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)

-A= \(\frac{2015}{2014.2}\)

-A=\(\frac{2015}{4028}\)

ZORO
17 tháng 9 2017 lúc 18:42

mình quên A=\(\frac{-2015}{4028}\)

HOSHIMYA ICHINGO
Xem chi tiết

Ta có:\(\left(x-1\right)\left(x+1\right)=x\left(x-1\right)+x-1^2=x^2-x+x-1=x^2-1\)

Áp dụng:\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

                  \(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{2014^2-1}{2014\cdot2014}\)

                  \(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot...\cdot\frac{2013\cdot2015}{2014^2}\)

                  \(=\frac{1}{2}\cdot\frac{2015}{2014}=\frac{2015}{4028}\)

Ngô Hồng Thuận
Xem chi tiết
thanhthanh
21 tháng 7 2016 lúc 13:09

kết bạn nhé

Phann  Thuu Trangg
21 tháng 7 2016 lúc 14:00

bn gửi nhé

Jin Air
21 tháng 7 2016 lúc 14:51

Tổng quát: a^4+1/4=(a^2+1/2)^2-a^2=(a^2+1/2-a)(a^2+1/2+a)=[(a-1/2)^2+1/4][(a^1/2)^2+1/4]=[(a-0,5)^2+0,25][(a+0,5)^2+0,25]

Tử số của M=[(2-0,5)^2+0,25][(2+0,5)^2+0,25][(4-0,5)^2+0,25][(4+0,5)^2+0,25][(6-0,5)^2+0,25][(6+0,5)^2+0,25]....[(2014-0,5)^2+0,25][(2014+0,5)^2+0,25]

                  =(1,5^2+0,25)(2,5^2+0,25)(3,5^2+0,25)(4,5^2+0,25)(5,5^2+0,25)(6,5^2+0,25)....(2013,5^2+0,25)(2014,5^2+0,25)

Mẫu số của M=[(1-0,5)^2+0,25][(1+0,5)^2+0,25][(3-0,5)^2+0,25][(3+0,5)^2+0,25][(5-0,5)^2+0,25][(5+0,5)^2+0,25]....[(2013-0,5)^2+0,25][(2013+0,5)^2+0,25]

                    =(0,5^2+0,25)(1,5^2+0,25)(2,5^2+0,25)(3,5^2+0,25)(4,5^2+0,25)(5,5^2+0,25)....(2012,5^2+0,25)(2013,5^2+0,25)

Vậy M=(2014,5^2+0,25)/(0,5^2+0,25)

Còn bao nhiêu bạn tính tiếp nhá

khôi lê nguyễn kim
Xem chi tiết
khôi lê nguyễn kim
23 tháng 8 2019 lúc 7:52

có dạng \(1-\frac{1}{a^2}=\frac{\left(a-1\right)\left(a+1\right)}{a^2}\) rút gon hết còn \(\frac{1}{4028}\)

chim chot
24 tháng 10 2020 lúc 15:38

1−1a2=(a−1)(a+1)a2 rút gọn \(\frac{1}{4082}\)

Khách vãng lai đã xóa
Nguyễn Thị Ánh Tuyết _29...
Xem chi tiết
Nguyễn Thị Hoa
31 tháng 3 2015 lúc 19:12

\(M=1+1,5+2+2,5+...+1007,5\)

\(M=\frac{1007,5+1}{2}.2014=1015559,5\)

Nguyễn Thị Ánh Tuyết _29...
Xem chi tiết
Akai Haruma
22 tháng 10 lúc 22:40

Lời giải:

$M=1+\frac{1}{2}.\frac{2(2+1)}{2}+\frac{1}{3}.\frac{3(3+1)}{2}+\frac{1}{4}.\frac{4(4+1)}{2}+....+\frac{1}{2014}.\frac{2014(2014+1)}{2}$
$=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2015}{2}$

$=\frac{2+3+4+....+2015}{2}$

$=\frac{1+2+3+....+2015}{2}-\frac{1}{2}$
$=\frac{2015(2015+1)}{4}-\frac{1}{2}=\frac{2031119}{2}$