có dạng \(1-\frac{1}{a^2}=\frac{\left(a-1\right)\left(a+1\right)}{a^2}\) rút gon hết còn \(\frac{1}{4028}\)
1−1a2=(a−1)(a+1)a2 rút gọn \(\frac{1}{4082}\)
có dạng \(1-\frac{1}{a^2}=\frac{\left(a-1\right)\left(a+1\right)}{a^2}\) rút gon hết còn \(\frac{1}{4028}\)
1−1a2=(a−1)(a+1)a2 rút gọn \(\frac{1}{4082}\)
a,\(\frac{\left(2x^3\right)}{4x^7}\)
b,\(\frac{\left(x-1\right)}{\left(x+1\right)^2}.\frac{x^2+2x+1}{x^2-1}\)
c,\(\frac{x^2-7x+12}{x^2-16}\)
d, \(\frac{x-1}{\sqrt{x+1}}:\left(\sqrt{x-1}\right)\)
Bài 8: Cho biểu thức \(P=\left(\frac{2x^2+1}{x^3-1}-\frac{1}{x-1}\right):\left(1-\frac{x^2+4}{x^2+x+1}\right)\)
Rút gọn $P$
Tính giá trị của biểu thức:
\(\frac{\left(x-2\right)\left(2x+2x^2\right)}{\left(x+1\right)\left(4x-x^3\right)}\) vs x = -\(\frac{1}{2}\)
\(\frac{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+4}{x^2+5x+4}\)
ai giúp mình rút gọn nào
\(\left(\frac{R1}{1+\beta\left(t_1-t_0\right)}+\frac{R2}{1+\beta\left(t_2+t_0\right)}\right)\left[1+\beta\left(\frac{t_1.\frac{R1\left[1+\beta\left(t_2-t_0\right)\right]}{R2\left[1+\beta\left(t_1-t_0\right)\right]}+t_2}{1+\frac{R1\left[1+\beta\left(t_2-t_0\right)\right]}{R2\left[1+\beta\left(t_1-t_0\right)\right]}}-t_0\right)\right]\)
Giải phương trình sau:
A=\(\left(\frac{2x}{x+3}+\frac{x}{x-3}+\frac{3x^{2^{ }}+3}{9-x^2}\right)-\left(\frac{x-1}{x-3}-\frac{1}{2}\right)\)
Rút gọn phân thức
1/\(\frac{x^{3^{ }}-y^{3^{ }}+z^{3^{ }}+3xyz}{\left(x+y\right)^{2^{ }}+\left(y+z\right)^2+\left(z-x\right)^2}\)
2/\(\frac{x^{3^{ }}+y^{3^{ }}+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
3/\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^3\right)+c^4\left(a^2-b^2\right)}\)
Rút gọn biểu thức:
\(E=\left(\frac{4x^2+2x}{1-4x^2}-\frac{4x^2-2x}{1+4x^2}\right):\left(\frac{1+2x}{1-2x}-\frac{1-2x}{1+2x}\right)\)
Bài 9. Rút gọn các phân thức sau
a) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
d) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
f) \(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)