rút gọn biểu thức
\(\left(\frac{x^3-3x}{x^2-9}\right):\left(\frac{9-x^2}{\left(x+3\right).\left(x+2\right)}+\frac{x-3}{x-2}-\frac{x+2}{x+3}\right)\)
a,\(\frac{\left(2x^3\right)}{4x^7}\)
b,\(\frac{\left(x-1\right)}{\left(x+1\right)^2}.\frac{x^2+2x+1}{x^2-1}\)
c,\(\frac{x^2-7x+12}{x^2-16}\)
d, \(\frac{x-1}{\sqrt{x+1}}:\left(\sqrt{x-1}\right)\)
bài 4 tính
a, \(\frac{2x^2-10xy}{2xy}\)+\(\frac{5y-x}{y}\)
b, \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)
c, x+y+\(\frac{x^2+y^2}{x+y}\)
bài 2 .dùng quy tắc biến đổi dấu để tìm MTC rồi thực hiện phếp tính
1a, \(\frac{4}{x+2}+\frac{3x-2}{x-2}+\frac{5x-6}{4-x^2}\)
b,\(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}\)
c. \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)
d, \(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
e,\(\frac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
CHO E=\(\left(\frac{x^3}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{2+x}\right):\left(x+2+\frac{10-x^2}{x-2}\right)\)
a) Rut gon E
b) Tim x thuoc Z sao cho E thuoc Z
\(\left(\frac{x+2}{2-x}-\frac{2-x}{x+2}-\frac{4x^2}{x^2-4}\right):\left(\frac{x^2-6x+9}{\left(2-x\right).\left(x-3\right)}\right)\)
1) Rút gọn các phân thức sau
a) A = \(\frac{\left(x+y+z\right)^2-3xy-3yz-3xz}{9xyz-3x^2-3y^2-3z^2}\)
b) B = \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3-\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\)
Tính giá trị của biểu thức:
\(\frac{\left(x-2\right)\left(2x+2x^2\right)}{\left(x+1\right)\left(4x-x^3\right)}\) vs x = -\(\frac{1}{2}\)
Cho biểu thức E=\(1+\left(\frac{2x^3+x^2-x}{x^3-1}-\frac{2x-1}{x-1}\right)\frac{x^2-x}{2x-1}\)
a)rút gọn E
b) Chứng minh E > \(\frac{2}{3}\)
Bài 9. Rút gọn các phân thức sau
a) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
d) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
f) \(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)