cm x^2+4x+7 vô nghiệm
CM : x^2 - 2x^3 + 4x^2 -3x + 2 vô nghiệm
CM : đa thức vô nghiệm
f(x)=9x2+6x+2
g(x)=x4-4x2+2013
\(f\left(x\right)=9x^2+6x+2\)
\(=\left(9x^2+3x\right)+\left(3x+1\right)+1\)
\(=3x\left(3x+1\right)+\left(3x+1\right)+1\)
\(=\left(3x+1\right)\left(3x+1\right)+1\)
\(=\left(3x+1\right)^2+1\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
b) \(g\left(x\right)=x^4-4x^2+2013\)
\(=\left(x^4-2x^2\right)-\left(2x^2-4\right)+2009\)
\(=x^2\left(x^2-2\right)-2\left(x^2-2\right)+2009\)
\(=\left(x^2-2\right)^2+2009\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
Cm 2x2-4x+5 vô nghiệm
Ta có: \(2x^2-4x+5=2x^2-4x+2+3=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )
Cm vô nghiệm lớp 7
G(x)=2x2 - 8x + 9
Biến đổi G(x) ta được:
\(G\left(x\right)=2x^2-8x+9=\left(2x^2-8x+8\right)+1=2\left(x-2\right)^2+1\ge1>0\forall x\)
Do đó : \(G\left(x\right)\) vô nghiệm (đpcm)
hình như cái này dùng hđt mà lớp 7 chưa có hđt
Chứng minh rằng các đa thức sau vô nghiệm:
a/ K(x) = -4x2 - 2
b/ Q(x) = 2(x + 1)2 + 7
c/ M(x) = x2 + 4x + 12
a) K(x) = -4x2 - 2
\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)
\(-2< 0\)
=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )
b) Q(x) = 2(x+1)2 + 7
\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)
7 > 0
=> 2(x+1)2 + 7 > 0 => Vô nghiệm ( đpcm )
c) cái này mình chịu nha TvT
cmr: 2x^2-4x+7 là vô nghiệm
\(2x^2-4x+9< 0\) Cm bỏ vô nghiệm
2x2 - 4x + 9
= (\(\sqrt{2}\)x - \(\sqrt{2}\))2 - 2 + 9
= (\(\sqrt{2}\)x - \(\sqrt{2}\))2 + 7 >= 7
=> Bất phương trình 2x2 - 4x + 9 < 0 vô nghiệm
tìm các giá trị của p để : a) phương trình (p + 1)x - (x+2) =0 vô nghiệm ; b) phương trình p^2 x - p= 4x - 2 có vô số nghiệm
a: \(\Leftrightarrow px-2=0\)
Để phương trình vô nghiệm thì p=0
b: \(\Leftrightarrow x\left(p^2-4\right)=p-2\)
Để phương trình có vô số nghiệm thì p-2=0
hay p=2
2x-3= 2(x-3)
x^2 -4x+6=0
chứng tỏ vô nghiệm
\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)