Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Trang
Xem chi tiết
socola
Xem chi tiết
Nguyễn Tấn An
11 tháng 7 2018 lúc 8:54

a) Ta có: \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\Leftrightarrow\left(\sqrt{a+b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b\le a+2\sqrt{ab}+b\)

Điều này luôn đúng với mọi a,b€N, do đó BĐT này đúng, dấu ‘=‘ xảy ra khi a=b=0.

b) Ai giải giúp với :)

Hi nguyễn
Xem chi tiết
Vũ Trọng Nghĩa
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

Rhider
Xem chi tiết
Rhider
19 tháng 12 2021 lúc 20:14

ai giỏi ạ

lan hương
Xem chi tiết
Huyền
21 tháng 6 2019 lúc 8:06

BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)

\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)

\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)

dấu bằng xảy ra khi ad=bc

Vãi Linh Hồn
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2019 lúc 11:23

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:23

\(\left|\sqrt{3}sinx+cosx\right|=2\left|\dfrac{\sqrt{3}}{2}sinxx+\dfrac{1}{2}cosx\right|=2\left|sin\left(x+\dfrac{\pi}{6}\right)\right|\le2\)

Đề bài sai 

Dương Ngọc Minh
Xem chi tiết
Rhider
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 20:39

Lời giải:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

Akai Haruma
19 tháng 12 2021 lúc 20:40

Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.