Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ryo Gamer
Xem chi tiết
Trần Tuấn Hoàng
2 tháng 5 2022 lúc 21:37

a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.

\(\Rightarrow\)△DBE∼△ACE (g-g).

b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)

-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.

\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)

c) EM cắt BC tại F.

-△BCE có: 2 đường cao BD và CA cắt nhau tại M.

\(\Rightarrow\)M là trực tâm của △BCE.

\(\Rightarrow\)EM⊥BC tại F.

-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).

\(\Rightarrow\)△BMF∼△BCD (g-g).

\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)

-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.

\(\Rightarrow\)△CMF∼△CBA (g-g).

\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)

-Từ (1) và (2) suy ra:

\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)

không đổi.

Nguyễn Kim Thành
Xem chi tiết
Bùi Nguyệt Nhi
Xem chi tiết
PHẠM ĐANG KHÔI
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 20:15

a) Xét ΔABD vuông tại A và ΔECD vuông tại E có 

\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔABD\(\sim\)ΔECD(g-g)

b) Xét ΔABF có

K là trung điểm của AF(gt)

M là trung điểm của AB(gt)

Do đó: KM là đường trung bình của ΔABF(Định nghĩa đường trung bình của tam giác)

Suy ra: KM//BF(Định lí 2 về đường trung bình của tam giác)

mà BF\(\perp\)BC(gt)

nên KM\(\perp\)BC

Xét ΔCKB có 

KM là đường cao ứng với cạnh BC(cmt)

BA là đường cao ứng với cạnh CK(gt)

KM cắt BA tại M(gt)

Do đó: M là trực tâm của ΔCKB(Tính chất ba đường cao của tam giác)

Suy ra: BK\(\perp\)CM

hay BK\(\perp\)OC(Đpcm)

Ngô Mai Bích	Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2023 lúc 21:57

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

Linh Đinh Thúy
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 1:16

a: sđ cung AC=2/3*180=120 độ

=>sđ cung AM=sđ cung MC=120/2=60 độ

sđ cung NB=sđ cung NC=60/2=30 độ

góc MIC=1/2(sđ cung AB+sđ cung MC)

=1/2(180+60)=120 độ

b: N là điểm chính giữa của cung BC

=>ON vuông góc bC

=>ON//AC
=>DN vuông góc NO

=>DN là tiếp tuyến của (O)

Duong Thuc Hien
Xem chi tiết
Nguyễn Xuân Anh
6 tháng 2 2018 lúc 0:03

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

Nguyễn Xuân Anh
5 tháng 2 2018 lúc 23:15

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu

Kii
Xem chi tiết
Gia Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 23:02

a: Xét ΔBAC vuông tại A có AH là đường cao

nên BA^2=BH*BC

b: BC=căn 18^2+24^2=30cm

CD là phân giác

=>DA/AC=DB/BC

=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2

=>DA=8cm