Tìm các số nguyên dương x,y biết:
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{3}\)
Tìm các số nguyên dương x, y biết: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
Quy đồng lên ta có 3x+3y=xy
<=>3x=y(x-3)
<=>3(x-3)+9=y(x-3) <=>(y-3)(x-3)=9 =>(y-3)(x-3) thuộc Ư(9)={1;3;9) rồi (y-3)(x-3)=1x9=2x3=9x1cho từng cái vào rồi sẽ ra x,yTìm các số nguyên dương x, y biết:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Do x,y là các số nguyên dương nên \(\frac{1}{x}\ge1;\frac{1}{y}\ge1\Rightarrow\frac{1}{x}+\frac{1}{y}\ge2>\frac{1}{2}\)
nhầm xíu.thông cảm nha.để tớ làm lại=((
Lời giải
Vai trò của x;y là bình đẳng.Giả sử \(x\ge y>0\).
Hiển nhiên,ta có: \(\frac{1}{y}< \frac{1}{2}\Rightarrow y>2\)
Ta có: \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\Rightarrow y\le4\)
Kết hợp đk y nguyên dương suy ra \(3\le y\le4\)
Suy ra y = 3 hoặc y = 4
Với y = 4 thì x =4
Với y = 3 thì x = 6
Vậy \(\left(x;y\right)=\left\{\left(4;4\right),\left(3;6\right),\left(6;3\right)\right\}\)
1. Tìm những giá trị nguyên dương của x thỏa mãn:
\(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
2. Tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
\(A=\frac{x+5}{x+1}\)
3. Tìm \(x,y\in Z\), biết: ( x + 4 )( y + 3 ) = 3
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Tìm các cặp số nguyên dương (x;y) sao cho \(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
Tìm x,y nguyên dương biết\(\frac{1}{x}+\frac{1}{y}=\frac{1}{xy}=1\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}=1\)=>\(\dfrac{x+y+1}{xy}=1\)=>x+y+1=xy =>x-xy=-1-y =>x(1-y)=-1-y
=>x=\(\dfrac{-1-y}{1-y}\) mà x nguyên dương nên -1-y ⋮ 1-y
=>(1-y)-2 ⋮ 1-y
=>2 ⋮ 1-y
=>1-y ∈{1;-1;2;-2}
=>y∈{0;2;-1;3}. Vì y nguyên dương và y khác 0 nên y∈{2;3}
* Nếu y=2 thì phương trình x+y+1=xy trở thành:
x+3=2x =>x=3
* Nếu y=3 thì phương trình x+y+1=xy trở thành:
x+4=3x =>x=2
- Vậy y=2 thì x=3 ; y=3 thì x=2.
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{xy}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{xy}\)=>x+y=1
\(\dfrac{1}{xy}=1\)=>xy=1
- Ta có: x, y nguyên dương mà xy=1 =>x=y=1 mà x+y=1 (vô lý)
Vậy x,y∈∅
tìm các số nguyên dương x,y thỏa x-y là số lẻ và \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)
\(\Leftrightarrow2018x+2018y=xy\)
\(\Leftrightarrow\left(2018x-xy\right)-\left(2018^2-2018y\right)=-2018^2\)
\(\Leftrightarrow x\left(2018-y\right)-2018\left(2018-y\right)=-2018^2\)
\(\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\)
Vì \(x-y\) lẻ => x,y khác tính chẵn lẻ
Không mất tổng quát g/s x chẵn, y lẻ
=> (x-2018) chẵn và (y-2018) lẻ
Lại có \(2018^2=4\cdot1009^2=4036\cdot1009\)
Nên ta có các TH sau:
+ Nếu: \(\hept{\begin{cases}x-2018=4\\y-2018=1009^2\end{cases}}\Rightarrow\hept{\begin{cases}x=2022\\y=1009^2+2018\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x-2018=4036\\y-2018=1009\end{cases}}\Rightarrow\hept{\begin{cases}x=6054\\y=3027\end{cases}}\)
Vậy \(\left(x;y\right)=\left\{\left(2022;1009^2+2018\right);\left(6054;3027\right)\right\}\) và 2 hoán vị của nó
Tìm các số nguyên dương x, y thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{2}{3}\)
Tìm các số nguyên dương x,y biết:
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{7}\)
\(\frac{1}{y}\)=\(\frac{1}{7}\)
suy ra 1.7=y.1
suy ra y=7
suy ra x=7
Tìm các số hữu tỉ dương x,y,z biết : \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)