Tìm n \(\varepsilon\) N để \(\frac{12n+2017}{8n+2018}\)là số nguyên
Tìm số nguyên n để B=\(\frac{12n+2017}{8n+2018}\)là số nguyên ?
Tìm số nguyên n để B=12n+20178/n+2018 là số nguyên ?
Để B là số nguyên thì \(12n+2017⋮8n+2018\)
=> \(\left(8n+2018\right)+4n-1⋮8n+2018\)
Mà \(8n+2018⋮8n+2018\)
=> \(4n-1⋮8n+2018\)
=> \(\left(12n+2017\right)+\left(4n-1\right)⋮8n+2018\)
=> \(16n+2016⋮8n+2018\)
=> \(2\left(8n+2018\right)-2020⋮8n+2018\)
Mà \(2\left(8n+2018\right)⋮8n+2018\)
=> \(2020⋮8n+2018\)
=> \(8n+2018\inƯ\left(2020\right)=\left\{\pm1;\pm2;\pm4;\pm5;.....;\pm2020\right\}\)
=> \(8n\in\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}\)
Mà n là số nguyên
=> \(\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}⋮8\)
.........................................................................................................................
Bạn ngồi mà mò. Chắc mò đến năm sau mới xong! Chúc bạn mò tốt!
tìm số nguyên n để B=\(\frac{3n+2017}{8n+2018}\)là số nguyên
tìm số nguyên n để B=12n+2017/8n+2018 là số nguyên
Để B là số nguyên thì \(24n+3034⋮8n+2018\)
\(\Leftrightarrow8n+2018\in\left\{1;2;5;10;20;302;604;755;1510;3020\right\}\)
\(\Leftrightarrow8n\in\left\{-2016;-2008\right\}\)
hay \(n\in\left\{-252;-251\right\}\)
Tìm n \(\varepsilon\)N sao cho A=\(\frac{11n^3+12n^2+12n+20}{n^2+1}\)có giá trị nguyên
11n^3+12n^2+12n+20=11n(n^2+1)+12(n^2+1)+(n+8)=(n^2+1)(11n+12)+(n+8)=B
De B chia het cho n^2+1 thi n+8 chia het cho n^2+1
suy ra (n-8)(n+8)chia het cho n^2+1 do n la so tu nhien
suy ra n^2-64 chia het cho n^2+1
suy ra n^2+1-65 chia het cho n^2+1
suy ra 65 chia het cho n^2+1
suy ra n^2+1 thuoc uoc cua 65 la :1;5;13;65
suy ra n^2=64 ; n=8 do n^2 la so chinh phuong
n=8 lmj đc....
n=-8 :( ms đc nhưng mak n thuộc N .. bài này cứ lms ý
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
Tìm tất cả các số nguyên dương n để \(1+n^{2017}+n^{2018}\) là số nguyên tố
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1
Tìm n thuộc Z
a) \(\frac{8n+1}{12n-3}\) là số nguyên tố
d) \(\frac{6n+5}{4n-7}\)là hợp số
Tìm n thuộc Z
a) \(\frac{8n+1}{12n-3}\) là số nguyên tố
d) \(\frac{6n+5}{4n-7}\)là hợp số
Tìm \(n\in N\) để:
P=n2018+n2017+1 là số nguyên tố.