Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vy
Xem chi tiết
Nguyễn Vy
21 tháng 2 2021 lúc 15:31

giup mình voi huhu

Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 22:48

a) Đặt \(x^2=a\left(a\ge0\right)\)

Ta có: \(2x^4-7x^2+4=0\)

Suy ra: \(2a^2-7a+4=0\)

\(\Delta=49-4\cdot2\cdot4=49-32=17\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{17}}{4}\left(nhận\right)\\a_2=\dfrac{-7+\sqrt{17}}{4}\left(loại\right)\end{matrix}\right.\)

Suy ra: \(x^2=\dfrac{7-\sqrt{17}}{4}\)

\(\Leftrightarrow x=\pm\dfrac{\sqrt{7-\sqrt{17}}}{2}\)

Vậy: \(S=\left\{\dfrac{\sqrt{7-\sqrt{17}}}{2};-\dfrac{\sqrt{7-\sqrt{17}}}{2}\right\}\) 

Linh Dayy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 13:33

a: =>7x=63

hay x=9

b: =>3x=-15

hay x=-5

d: =>-6x=-16

hay x=8/3

Nguyễn Minh Anh
12 tháng 2 2022 lúc 13:34

a) \(7x=63\Leftrightarrow x=9\)

b) \(3x=-15\Leftrightarrow x=-5\)

c) \(2x-5=0\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)

d) \(-6x=-16\Leftrightarrow x=\dfrac{8}{3}\)

Đỗ Tuệ Lâm
12 tháng 2 2022 lúc 13:34

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2019 lúc 2:16

a) Phương trình bậc hai:  7 x 2   –   2 x   +   3   =   0

Có: a = 7; b = -2; c = 3;  Δ   =   b 2   –   4 a c   =   ( - 2 ) 2   –   4 . 7 . 3   =   - 80   <   0

Vậy phương trình vô nghiệm.

b) Phương trình bậc hai Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có: a = 5; b = 2√10; c = 2;  Δ   =   b 2   –   4 a c   =   ( 2 √ 10 ) 2   –   4 . 2 . 5   =   0

Vậy phương trình có nghiệm kép.

c) Phương trình bậc hai Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm phân biệt.

d) Phương trình bậc hai  1 , 7 x 2   –   1 , 2 x   –   2 , 1   =   0

Có: a = 1,7; b = -1,2; c = -2,1; 

Δ   =   b 2   –   4 a c   =   ( - 1 , 2 ) 2   –   4 . 1 , 7 . ( - 2 , 1 )   =   15 , 72   >   0

Vậy phương trình có hai nghiệm phân biệt.

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

Thien Nguyen
Xem chi tiết
Đỗ Thanh Hải
16 tháng 4 2021 lúc 17:41

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

Phong Nguyệt
Xem chi tiết
TV Cuber
1 tháng 4 2022 lúc 20:30

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

Lê Anh Khoa
1 tháng 4 2022 lúc 21:02

ông ơi mấy bài này bấm máy tính là ra mà ông

 

Nguyễn Hữu Minh
1 tháng 4 2022 lúc 21:04

a) \(3x^2+4x=0\Leftrightarrow\left(3x+4\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\end{matrix}\right.\)

   ➤\(x\in\left\{0;-\dfrac{4}{3}\right\}\)

b) \(-2x^2-8=0\Leftrightarrow-2x^2+\left(-2\right)\cdot4=0\)

                           \(\Leftrightarrow\left(x^2+4\right)\cdot\left(-2\right)=0\\ \Leftrightarrow x^2+4=0\\\Rightarrow x^2=\varnothing\Leftrightarrow x=\varnothing \) 

                          vì với mọi x, ta luôn đúng với: \(x^2\ge0\Leftrightarrow x^2+4\ge4>0\)

\(x=\varnothing\)

c)\(2x^2-7x^2+5=0\)

+) \(a+b+c=2+\left(-7\right)+5=7-7=0\)

Do đó, phương trình có 2 nghiệm sau:

\(x=1\) và \(x=\dfrac{5}{2}=2,5\)

\(x\in\left\{1;2,5\right\}\)

d) \(x^2-8x-48=0\)

+)\(\Delta=\left(-8\right)^2-4\cdot1\cdot\left(-48\right)=64+192=266>0\)

\(\Leftrightarrow\sqrt{\Delta}=\sqrt{266}\)

➢Do đó, ta có: \(\left[{}\begin{matrix}x=\dfrac{\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{\sqrt{266}+8}{4}\\x=\dfrac{-\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{8-\sqrt{266}}{4}\end{matrix}\right.\)

➤ \(x\in\left\{\dfrac{8+\sqrt{266}}{4};\dfrac{8-\sqrt{266}}{4}\right\}\)

linh mai
Xem chi tiết
nthv_.
23 tháng 3 2023 lúc 14:51

loading...  

random name
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 5 2022 lúc 16:02

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2017 lúc 7:10

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2017 lúc 15:35

a)  3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1):

3 x 2   –   7 x   –   10   =   0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm  x 1   =   - 1   v à   x 2   =   - c / a   =   10 / 3 .

+ Giải (2):

2 x 2   +   ( 1   -   √ 5 ) x   +   √ 5   -   3   =   0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): x 2   –   2   =   0   ⇔   x 2   =   2  ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c)

x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 0,6x + 1 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

x 2   –   x   –   1   =   0

Có a = 1; b = -1; c = -1

⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . ( - 1 )   =   5   >   0

⇒ (2) có hai nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)

x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Nguyễn Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 22:19

a) Ta có: (5x-1)(x-3)<0

nên 5x-1 và x-3 trái dấu

Trường hợp 1:

\(\left\{{}\begin{matrix}5x-1>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{5}< x< 3\)

Trường hợp 2:

\(\left\{{}\begin{matrix}5x-1< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>3\end{matrix}\right.\Leftrightarrow loại\)

Vậy: S={x|\(\dfrac{1}{5}< x< 3\)}