tính tổng A=1/30+1/42+1/56+1/72+...+1/380
Tính tổng : A = -1/20 +-1/30 +-1/42 + -1/56+ -1/72 + -1/90
\(A=-\dfrac{1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\\ A=-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\\ A=-\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\right)\\ A=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=-\left(\dfrac{1}{4}-\dfrac{1}{10}\right)=-\dfrac{3}{20}.\)
Không quy đồng hãy tính tổng sau: A= -1/20+(-1/30)+(-1/42)+(-1/56)+(-1/56)+(-1/72)+(-1/90)
Sửa đề: A=-1/20+(-1/30)+(-1/42)+(-1/56)+(-1/72)+(-1/90)
=-(1/20+1/30+...+1/90)
=-(1/4-1/5+1/5-1/6+...+1/9-1/10)
=-1/4+1/10
=-5/20+2/20=-3/20
không quy đồng hãy tính tổng A=-1/20+ -1/30+ -1/42+ -1/56+ -1/72+ -1/90
`Answer:`
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+-\frac{1}{56}+-\frac{1}{72}+-\frac{1}{90}\)
\(=-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(=-\frac{1}{20}-\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=-\frac{1}{20}-\left(\frac{1}{5}-\frac{1}{10}\right)\)
\(=-\frac{1}{20}-\frac{1}{10}\)
\(=-\frac{3}{20}\)
Tính nhanh tổng sau: A= 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
A=1/20+1/30+1/42+1/56+1/72+1/90
A=1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
A=1/4-1/5+1/5-1/6+...+1/9-1/10
A=1/4-1/10
A=3/20
Không quy đồng hãy tính tổng sau A=-1/20+(-1/30)+(-1/42)+(-1/56)+(-1/72)+(-1/90)
A=\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
A=\(-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
A=\(-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
A=\(-\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
A=\(-\dfrac{3}{20}\)
tách đc như bước 3 là nhờ công thức \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) hoặc \(\dfrac{k}{n\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\) nhé
Không quy đồng hãy tính tổng sau: .A= -1/ 20+ -1/30+ -1/42+ -1/56+ -1/72+ -1/90
\(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
\(A=\dfrac{-1}{4\cdot5}+\dfrac{-1}{5\cdot6}+\dfrac{-1}{6\cdot7}+\dfrac{-1}{7\cdot8}+\dfrac{-1}{8\cdot9}+\dfrac{-1}{9\cdot10}\)
\(A=\dfrac{-1}{4}-\dfrac{-1}{5}+\dfrac{-1}{5}-\dfrac{-1}{6}+\dfrac{-1}{6}-\dfrac{-1}{7}+\dfrac{-1}{7}-\dfrac{-1}{8}+\dfrac{-1}{8}-\dfrac{-1}{9}+\dfrac{-1}{9}-\dfrac{-1}{10}\)
\(A=\dfrac{-1}{4}-\dfrac{-1}{10}\)
\(A=-\dfrac{3}{20}\)
Ko quy đồng hãy tính tổng sau:
A=-1/20+-1/30+-1/42+-1/56+-1/72+-1/90
\(=-1\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)
\(=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=-\frac{3}{20}\)
Không quy đồng, hãy tính tổng sau: A= -1/20+-1/30+-1/42+-1/56+-1/72+-1/90