Rút gọn: biểu thức A=(x^4 - 5x^2 + 4) / (x^4 - 10x^2 + 9)
Rút gọn: (x^4 - 5x^2 + 4) / (x^4 - 10x^2 + 9)
\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\) \(ĐKXĐ:x\ne\pm3\)
\(=\frac{x^4-4x^2-x^2+4}{x^4-9x^2-x^2+9}\)
\(=\frac{\left(x^4-4x^2\right)-\left(x^2-4\right)}{\left(x^4-9x^2\right)-\left(x^2-9\right)}\)
\(=\frac{x^2.\left(x^2-4\right)-\left(x^2-4\right)}{x^2.\left(x^2-9\right)-\left(x^2-9\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\frac{x^2-4}{x^2-9}\)
\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2.\left(x^2-1\right)-4.\left(x^2-1\right)}{x^2.\left(x^2-1\right)-9.\left(x^2-1\right)}\)
\(=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\frac{x^2-4}{x^2-9}\)
Cho biểu thức: \(A=\frac{x^4-5x+4}{x^4-10x^2+9}\)
a) Rút gọn A
b) Tìm x để A= 0
c) Tìm giá trị của A khi |2x-1|= 7
Lời giải:
a. ĐKXĐ: $x\neq \pm 1; \pm 3$
$A=\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{(x-1)(x+1)(x-2)(x+2)}{(x-1)(x+1)(x-3)(x+3)}$
$=\frac{(x-2)(x+2)}{(x-3)(x+3)}=\frac{x^2-4}{x^2-9}$
b.
Để $A=0$ thì $x^2-4=0$
$\Leftrightarrow (x-2)(x+2)=0$
$\Leftrightarrow x=\pm 2$ (thỏa mãn)
c.
$|2x-1|=7$
$\Rightarrow 2x-1=7$ hoặc $2x-1=-7$
$\Rightarrow x=4$ hoặc $x=-3$.
Mà $x\neq \pm 1; \pm 3$ nên $x=4$
Khi đó:
$A=\frac{4^2-4}{4^2-9}=\frac{12}{7}$
rút gọn và tính giá trị biểu thức
c)P=[(15x^5y³-10x³y²+20x^4y^4)] :(5x²y²)tại x=-1 và y=2
\(P=\dfrac{15x^5y^3-10x^3y^2+20x^4y^4}{5x^2y^2}\)
\(=\dfrac{15x^5y^3}{5x^2y^2}-\dfrac{10x^3y^2}{5x^2y^2}+\dfrac{20x^4y^4}{5x^2y^2}\)
\(=3x^3y-2x+4x^2y^2\)
Khi x=-1 và y=2 thì \(P=3\cdot\left(-1\right)^3\cdot2-2\cdot\left(-1\right)+4\cdot\left(-1\right)^2\cdot2^2\)
\(=-6+2+16=4+16=20\)
Cho biểu thức A = 5x+2 + |5x+4|
Rút gọn biểu thức AA trong các trường hợp:
+) x ≥\(\dfrac{-4}{5}\): A= ?
+) x < \(\dfrac{-4}{5}\) :A = ?
\(x\ge-\dfrac{4}{5}\)
\(A=5x+2+\left|5x+4\right|=5x+2+5x+4=10x+6\)
\(x< -\dfrac{4}{5}\)
\(A=5x+2+\left|5x+4\right|=5x+2-5x+4=6\)
1) Cho biểu thức A= (2x-9)/(x^2-5x+6) - (x+3)/(x-2) + (2x+4)/(x-3) với x khác 2 và 3
a) Rút gọn biểu thức A
b) Tìm các giá trị của x để A=2
2) Phân tích đa thức sau thành nhân tử: x^4 + 2yx^2 + y^2 -9
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
btap toán: tìm đkxđ và rút gọn 1)x²+2x+1/x+1 2)x²-6x+9/x(x-3) 3)x²-4/2x(x+2) 4)x²-2x/5x²-10x
`1)` Biểu thức xác định `<=>x+1 \ne 0<=>x \ne -1`
`[x^2+2x+1]/[x+1]=[(x+1)^2]/[x+1]=x+1`
`2)` Bth xác định `<=>x(x-3) \ne 0<=>{(x \ne 0),(x \ne 3):}`
`[x^2-6x+9]/[x(x-3)]=[(x-3)^]/[x(x-3)]=[x-3]/x`
`3)` Bth xác định `<=>2x(x+2) \ne 0<=>{(x \ne 0),(x \ne -2):}`
`[x^2-4]/[2x(x+2)]=[(x-2)(x+2)]/[2x(x+2)]=[x-2]/[2x]`
`4)` Bth xác định `<=>5x^2-10x \ne 0<=>5x(x-2) \ne 0<=>{(x \ne 0),(x \ne 2):}`
`[x^2-2x]/[5x^2-10x]=[x(x-2)]/[5x(x-2)]=1/5`
1)
\(ĐKXĐ:x\ne-1\)
\(\dfrac{x^2+2x+1}{x+1}\\ =\dfrac{\left(x+1\right)^2}{x+1}\\ =x+1\)
2)
ĐKXĐ x khác 0 và x khác 3
\(\dfrac{x^2-6x+9}{x\left(x-3\right)}\\ =\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}\\ =\dfrac{x-3}{x}\)
3)
ĐKXĐ: x khác 0 và x khác -2
\(\dfrac{x^2-4}{2x\left(x+2\right)}\\ =\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}\\ =\dfrac{x-2}{2x}\)
4)
DKXĐ: x khác 0 và x khác 2
\(\dfrac{x^2-2x}{5x^2-10x}\\ =\dfrac{x\left(x-2\right)}{5x\left(x-2\right)}\\ =\dfrac{1}{5}\)
đk `x≠-1`
`(x^2+2x+1)/(x+1)`
`=((x+1)^2)/(x+1)`
`=x+1`
---------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
`(x^2-6x+9)/(x(x-3))`
`=((x-3)^2)/(x(x-3))`
`=(x-3)/x`
--------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-2\end{matrix}\right.\)
`(x^2-4)/(2x(x+2))`
`=((x-2)(x+2))/(2x(x+2))`
`=(x-2)/(2x)`
--------
đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
`(x^2-2x)/(5x^2-10x)`
`=(x(x-2))/(5x(x-2))`
`=x/(5x)`
rút gọn biểu thức
a. (5x+1)^2+2(5x-1)(5x+1)+(5x+1)^2
b.(x^2+8)(x+4)-(x+4)(x^2-4x+16)
Cho biểu thức 5 x + 2 x 2 - 10 x + 5 x - 2 x 2 + 10 x . x 2 - 100 x 2 + 4 . Rút gọn biểu thức