Cho tam giác ABC có E là giao điểm 2 đường phân giác góc ngoài tại B và C. D là giao điểm 2 đg phân diacs góc B và C
a) C/m 3 điểm A;D;E thẳng hàng
b) tính góc BDC+góc BEC
cho tam giác ABC có E là giao điểm các tia phân giác góc ngoài B,C và D là giao điểm các tia phân giác góc B, C của tam giác ABC
a) C/m các điểm A, D, E cùng nằm trên một đường thẳng
B)Tính góc BDC+gócBEC
tự làm là hạnh phúc của mỗi công dân.
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.
Cho tam giác ABC, góc A=50 độ, I là giao điểm của 2 đường phân giác trong của góc B và góc C. K là giao điểm 2 đường phân giác ngoài của góc B và góc C
a) Tính góc BIC
b) Tính góc BKC
c) Chứng minh A, I, K thẳng hàng
a) Xét ΔABC có
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow2\cdot\widehat{IBC}+2\cdot\widehat{ICB}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=65^0\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+65^0=180^0\)
hay \(\widehat{BIC}=115^0\)
Vậy: \(\widehat{BIC}=115^0\)
a. cho tam giác ABC , qua giao điểm I các đường phân giác góc B và C của tam giác ABC, vẽ đường thẳng song song với BC, cắt các đường thẳng AB,AC lầ lượt tại M,N. chứng minh MN=MB+NC.
b.kết luận trên thay đổi ra sao nếu I là giao điểm 2 phân giác của góc ngoài tại đỉnh B và C?
c. kết luận trên thay đổi ra sao nếu I là giao điểm của tia phân giác của góc ngoài góc B và tia phân giác của góc ACB
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài làm
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau:
5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2.
Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7
Ta làm như sau: 6 - 7
Không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5.
Vậy 8,6 - 2,7 = 5,9
a] Cho tam giác ABC. Qua giao điểm I các đường phân giác trong của góc B và C của tam giác ABC. Vẽ đường thẳn song song với BC, cắt các đường thẳng AB, AC lần lược tại M, N. Chứng minh MN =MB+NC.
b] kết luận trên thay đổi ra sao nếu I là giao điểm 2 phân giác của góc ngoài tại đỉnh B và C?
c] kết luân trên thay đổi ra sao nếu I là giao điểm của tia phân giác của góc ngoài tại đỉnh B và tia phân giác của góc ABC?
Cho tam giác ABC nội tiếp đường tròn tâm O . I là giao điểm các đường phân giác bên trong góc B và C. E là giao điểm các đường phân giác góc ngoài B và C . Cm
a BIEC nội tiếp
b AE cắt đường tròn tâm O tại M . Cm M là trung điểm IE
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
1) Cho góc xOy=110 độ. LẤy 2 điểm A và B thuộc tia Ox(Oa<OB). Lấy điểm C, D thuộc tia Oy sao cho Oc=Oa, OB=OD.Gọi G là giao điểm của AD và BC. Số đo góc GOX=
2) Cho tam giác ABC, I LÀ giao điểm dường phân giác trong của góc B và C. J là giao hai dường phân giác ngoài của B và C. Biết góc BIC=125 Độ
3)Cho tam giác ABC vuông tại A (AB<AC), Dla2 điểm trên cạnh AC sao cho góc DBC=45 độ. Vẽ DE vuông góc với BC tại E. Góc BAE =?