Cho tam giác ABC vuông tại A, phân giác DB , D thuộc AC. Qua D kẻ đường thẳng vuông góc với BC tại E. Trên tia đối của AB lấy điểm F sao cho AF=CE. Chứng minh 3 điểm E,D,F thẳng hàng
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD (De AC) và kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: DA = DE b) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm E, D, F thẳng hàng?
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
cho tam giác ABC vuông tại A có AB<AC lấy E thuộc CB sao cho CA=CE qua E kẻ đường vuông góc với BC cắt AB tại D a, chứng minh CD vuông với AE b, lấy F thuộc tia đối của AC sao cho AF=EB chứng minh 3 điểm EDF thẳng hàng
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
CA=CE
=>ΔCAD=ΔCED
=>CA=CE và DA=DE
=>CD là trung trực của AE
=>CD vuông góc AE
b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=EB
=>ΔDAF=ΔDEB
=>góc ADF=góc EDB
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Cho tam giác ABC vuông tại A(AB<AC). Kẻ các đường phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc với BC cắt BC tại E. Trên tia đối của tia AC lấy điểm F sao cho AF=BE.
a,Chứng minh:E,D,F thẳng hàng
b,Từ M kẻ đường thẳng vuông góc với BC cắt AC tại N. Chứng minh MB=MN
Cho tam giác ABC vuông tại A (AB<AC). Kẻ các đường phân giác AM và CD của tam giác ABC. Qua D kẻ đường vuông góc với BC và cắt BC tại E. Trên tia đối của tia AC lấy F sao cho AF = BE
a)Chứng minh ba điểm E,D,F thẳng hàng
b)Từ M kẻ đường thẳng vuông góc với BC cắt AC tại N. Chứng minh MN = MB
Cho tam giác ABC vuông tại A (AB < AC). Kẻ các đường phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc với BC và cắt BC tại E. Trên tia đối của tia AC lấy điểm F sao cho AF = BE.
a) Chứng minh ba điểm E, D, F thẳng hàng
b) Từ M kẻ đường thẳng vuông góc với BC cắt AC tại N. Chứng minh MN = MB
Câu b) thôi ạ
b) Lấy điểm I thuộc cạnh AB sao cho IA = AN
Chứng minh \(\Delta\)MAN = \(\Delta\)MAI => MN = MI(1)
và ^MIA = ^MNA => ^MIB = ^MNC mà ^MNC = ^MBA => ^MIB = ^MBA hay ^MIB = ^MBI
=> \(\Delta\)MBI cân => MB = MI (2)
Từ (1) ; (2) => MN = MB
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
AF=EC(gt)
DA=DE(cmt)
Do đó: ΔADF=ΔEDC(hai cạnh góc vuông)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(Cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
Cho tam giác ABC vuông tại A, phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E
a) Chứng minh : Tam giác BAD = Tam giác BED
b) Chứng minh : BD là trung trực của AE
c) Chứng minh: AD < DC
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE . Chứng minh 3 điểm E,D,F thẳng hàng
Cho tam giác ABC, phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E
a, Chứng minh tam giác BAD =tam giác BED
b, CM BD là đường trung trực của AE
c, Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh E,D,F thẳng hàng