Tính tổng
A = \(2^{100}-3.2^{99}+3.2^{98}-3.2^{97}+...+3.2^2-3.2+3\)
1.Tính nhanh các tổng sau
B= 2100-3.299+3.298-3.297+..+3.22-3.2+3
2.Chứng minh rằng
212+312+213+214+315 chia hết cho 7
VUI LÒNG LÀM ĐẦY ĐỦ GIÚP MIK NHAAA
Bài 1 :
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
Bài 2 :
2.Chứng minh rằng
212+312+213+214+315 chia hết cho 7
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
Tính nhanh
1/100 - 1/ 100 . 99 - 1/99 . 98 - 1/ 97 .98 - 1/ 97 .98 - ..- 1/ 3.2 - 1/2.1
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
tính nhanh C=1/100 -1/99 . 98-1/98 . 97-1/97 . 96-...-1/3.2-1/2.1
1/100. 99- 1/99. 98- 1/98. 97.... 1/3.2-1/2.1 = ?
1/100.99 - 1/99.98 - 1/98.97 -...- 1/3.2 - 1/2.1
=-(1/100.99 + 1/99.98 + 1/98.97 +...+ 1/3.2 + 1/2.1)
=-(1/2.1+1/3.2 +...+1/98.97+ 1/99.98 +1/100.99 )
=-(1/1.2+1/2.3+1/3.4+...+1/97.98+ 1/98.99 +1/99.100)
=-(1/1-1/2+1/2-1/3+1/3......-1/98+1/98-1/99+1/99-1/100)
=-(1/1-1/100)=-99/100
tính nhanh
C= 1/100-1/100.99-1/99.98-1/98-97-...-1/3.2-1/2.1
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - (1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
\(\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\frac{99}{100}\)
\(=\frac{-49}{50}\)
Thực hiện phép tính( tính nhanh nếu có thể):
a/ 26 + 173 + 74 + 27
b/ 75.37 + 89.46 + 75.52 - 89.21
c/ \(2^7:2^2+5^4:5^3.2^4-3.2^5\)
d/ \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
a) \(26+173+74+27\)
\(=\left(26+74\right)+\left(173+27\right)\)
\(=100+200\)
\(=300\)
b) \(75\cdot37+89\cdot46+75\cdot52-89\cdot21\)
\(=75\cdot\left(37+52\right)+89\cdot\left(46-21\right)\)
\(=75\cdot89+89\cdot25\)
\(=89\cdot\left(75+25\right)\)
\(=89\cdot100\)
\(=8900\)
c) \(2^7:2^2+5^4:5^3\cdot2^4-3\cdot2^5\)
\(=2^{7-2}+5^{4-3}\cdot2^4-3\cdot2^5\)
\(=2^5+5\cdot2^4-3\cdot2^5\)
\(=2^4\cdot\left(2+5-3\cdot2\right)\)
\(=2^4\cdot\left(7-6\right)\)
\(=2^4\)
\(=16\)
d) \(100:\left\{250:\left[450-\left(4\cdot5^3-2^2\cdot25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4\cdot5^3-4\cdot5^2\right)\right]\right\}\)
\(=100:\left[250:\left(450-4\cdot5^2\cdot4\right)\right]\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
Tính:
\(a.\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(b.\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
Tìm x biết
10 + 2 . x = 4⁵ : 4³
2 x - 6² : 18 = 3.2²
70 - 5 . ( x- 3 ) = 3.2
\(10+2\cdot x=4^5:4^3\)
\(\Rightarrow10+2\cdot x=4^{5-3}\)
\(\Rightarrow10+2\cdot x=4^2\)
\(\Rightarrow10+2\cdot x=16\)
\(\Rightarrow2\cdot x=16-10\)
\(\Rightarrow2\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{2}=3\)
__________________
\(2\cdot x-6^2:18=3\cdot2^2\)
\(\Rightarrow2\cdot x-36:18=12\)
\(\Rightarrow2\cdot x-2=12\)
\(\Rightarrow2\cdot x=12+2\)
\(\Rightarrow2\cdot x=14\)
\(\Rightarrow x=\dfrac{14}{2}=7\)
_________________
\(70-5\cdot\left(x-3\right)=3\cdot2\)
\(\Rightarrow70-5\cdot\left(x-3\right)=6\)
\(\Rightarrow70-5x+15=6\)
\(\Rightarrow-5x+15=6-70\)
\(\Rightarrow-5x+15=64\)
\(\Rightarrow-5x=64-15\)
\(\Rightarrow-5x=49\)
\(\Rightarrow x=-\dfrac{49}{5}\)
tính A=\(1.2+2.2^2+3.2^3+...+99.2^{99}+100.2^{100}\)