2.22+3.23+4.24+5.25+...+100.2100
2.22+3.23+4.24+5.25+...+100.2100
So sánh A với 1
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Tính tổng sau:
S=\(\frac{1}{2\sqrt[]{1}+1\sqrt[]{2}}+\frac{1}{3\sqrt[]{2}+2\sqrt[]{3}}+.........+\frac{1}{100\sqrt[]{99}+99\sqrt[]{100}}\)
Tính \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+... +\dfrac{2}{99}+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}\right)-2\)
tính (100+ 99/2 +98/3 +...+ 1/100) / (1/2 + 1/3 +1/4+...+ 1/101) -2
Tính tổng A= \(1-2+2^2-2^3+2^4-2^5+....-2^{99}+2^{100}\)
Tính tổng các chử số của A, biết rằng*:
\(\sqrt{A}=99...96\) (có 100 chữ số 9 )
\(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+\dfrac{97}{4}....+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....\dfrac{1}{100}\right)-2\)