Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yuino Sakura
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 18:03

\(f\left(2n\right)=2.\left(2n\right)^2+3.\left(2n\right)+1=8n^2+6n+1\)

\(f\left(n\right)=2n^2+3n+1\)

\(\Rightarrow f\left(2n\right)-f\left(n\right)=6n^2+3n=3\left(2n^2+n\right)⋮3\) (đpcm)

Thúy
Xem chi tiết
Ngô Linh
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Mr Lazy
12 tháng 8 2015 lúc 12:08

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

Nijino Yume
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Phạm Ánh Tuyết
16 tháng 4 2017 lúc 19:17

Đây là suy nghĩ của mk thôi, mình cx ko chắc lắm đâu:

Ta có:

F(x)=4x3 + 3x4 \(-\)1 - x2+4x2 -x3-2x4 +3-3x3

=(3x4-2x4) +(4x3-x3-3x3)+(-x2+4x2)+( -1+3)

= x4 + 3x2 +2

Lại có:

x4\(\ge\)0

=> -x4\(\ge\)0

3x2\(\ge\)0

=> 3(-x)2\(\ge\)0

2>0

=> x4+3x2+2>0

Vậy đa thức F(x) luôn nhận giá trị lớn hơn 0 vs mọi x hay đa thức F(x) không có nghiệm trong R

Trương Hồng Hạnh
16 tháng 4 2017 lúc 19:25

F (x) = 4x3 + 3x4 - 1 - x2 + 4x2 - x3 - 2x4 + 3 - 3x3

F (x) = (3x4 - 2x4) + (4x3 - x3 - 3x3) + (-x2 + 4x2) + (-1+3)

F (x) = x4 + 3x2 + 2

Ta có: x4 \(\ge\) 0 với mọi x

Ta có: 3x2 \(\ge\) 0 với mọi x

=> x4 + 3x2 \(\ge\) 0 với mọi x

Mà x4 + 3x2 + 2 > 0

Vậy F (x) vô nghiệm

Đy Ngân Hà
Xem chi tiết
Lê Hà Phương
31 tháng 7 2016 lúc 16:50

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

Lê Hà Phương
31 tháng 7 2016 lúc 17:05

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

Big City Boy
Xem chi tiết