Ta có: \(f\left(x\right)=2x^2+3n+1\)
\(\Rightarrow\hept{\begin{cases}f\left(2n\right)=2\left(2n\right)^2+3\left(2n\right)+1\\f\left(n\right)=2n^2+3n+1\end{cases}}\Rightarrow\hept{\begin{cases}f\left(2n\right)=8n^2+6n+1\\f\left(n\right)=2n^2+3n+1\end{cases}}\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=8n^2+6n+1-\left(2n^2+3n+1\right)\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=8n^2+6n+1-2n^2-3n-1\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=\left(8n^2-2n^2\right)+\left(6n-3n\right)+\left(1-1\right)\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=6n^2+3n\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=3\cdot\left(2n^2+n\right)⋮3\)
Vậy,\(f\left(2n\right)-f\left(n\right)⋮3\)(đpcm)
Ta có :
\(f\left(2n\right)=2\left(2x^2+3x+1\right)=4x^2+6x+2\)
\(f\left(n\right)=2n^2+3n+1\)
Suy ra :
\(f\left(2n\right)-f\left(n\right)=\left(4n^2+6n+2\right)-\left(2n^2+3n+1\right)\)
\(f\left(2n\right)-f\left(n\right)=4n^2+6n+2-2n^2-3n-1\)
\(f\left(2n\right)-f\left(n\right)=\left(4n^2-2n^2\right)+\left(6n-3n\right)+\left(2-1\right)\)
\(f\left(2n\right)-f\left(n\right)=2n^2+3n+1\)
Phần chứng minh bạn tự làm
Chúc bạn học tốt ~