tìm tất cả các STN x,y sao cho \(2^x+7=\left|y-11\right|+y-11\)
tìm tất cả các x,y thỏa mãn biết: a)\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
b)\(\left|2x-27\right|^{2015}+\left(3y+10\right)^{2016}=0\)
c)sao cho (2007ab) à bình phương của một số tự nhiên
1. Tìm tất cả các giá trị của \(a\) sao cho tồn tại duy nhất một hàm \(f:ℝ\rightarrowℝ\) thỏa mãn điều kiện \(f\left(x^2+y+f\left(y\right)\right)=\left[f\left(x\right)\right]^2+ay,\forall x,y\inℝ\)
2. Tìm tất cả các hàm \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn \(f\left(x\right).f\left(y\right)=f\left(x+yf\left(x\right)\right),\forall x,y\inℝ^+\)
Giúp mình 2 bài này với, ngày mai là mình phải nộp rồi, cảm ơn các bạn trước nhé.
bạn ơi có thể ghi lại rõ hơn được không nhỉ mình nhìn hơi rối á
Bạn nhấn chữ "Đọc tiếp" ở ngay dưới câu hỏi chưa? Nếu bạn chưa nhấn thì nhấn đi, nó tự xuống dòng đó.
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
Tham khảo:
Nhưng có vẻ không đúng yêu cầu đề lắm :<
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)
Tìm tất cả các cặp số dương x ,y sao cho \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)
Tính các biểu thức sau :
\(\dfrac{a.\left(7\cdot x^2+11\cdot y^2\right)}{\left(14\cdot x^{12}-11\cdot y^2\right)}.\left(\dfrac{x}{11}\right)=\left(\dfrac{y}{7}\right)\)
a) tìm giá trị nhỏ nhất của biểu thức C= \(\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)3
b) chứng tỏ rằng S=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không là stn với mọi n thuộc N , n>2
c) tìm tất cả các cặp số nguyên x,y sao cho : x-2xy+y=0
d)tìm tất cả các cặp số nguyên dương x,y,z thỏa mãn : x+y+z=xyz
Tìm tất cả các số nguyên x,y thỏa mãn phương trình: \(x\left(y^2+7\right)+y\left(x^2+7\right)+17=xy\left(xy+3\right)\)
Tìm tất cả các giá trị x,y nguyên dương sao cho \(\left(x^3+y\right)\left(y^3+x\right)\) là lập phương của một số nguyên tố.
Tìm tất cả các STN x,y sao cho y+1 chia hết cho x và x+1 chia hết cho y
theo bài ra ta có:
y+1 chia hết cho x
=> y chia hết cho x
1 chia hết cho x\
=> x E Ư(1)={ 1 và -1 }
vậy x= 1;-1
x+1 chia hết cho y
=> x chia hết cho y
1 chia hết cho y
=> y E Ư(1)={ 1 và -1 }