cho tam giác cân ABC .kẻ các đường cao AH cắt BK tại I.c/m
a,tam giác BKC đồng dạng vs tam giác AHC
B,tam giác HKC đồng dạng vs tam giác ABC
c, gọi M là trung điểm của AI .c/m góc MKH=90độ
Cho tam giác ABC nhọn, đường cao AH và BK cắt nau tại I. a) CM: tam giac AKB đồng dạng với tam giác BHA. b) tam giác BKC đồng dạng với tam giác AHC. c) CM: BI . IK = AI . IH. d) CM: ABI đồng dạng HKI. e) tam giác ABC đồng dạng tam giác HKC
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
Cho tam giác (cân tại A) vẽ đường cao AH, đường cao BK
a)Tìm các cặp tam giác vuông đồng dạng ? Giải thích tại sao ?
b) Cho Hãy tính độ dài các cạnh của tam giác ABC
c) Gọi I là giao điểm của và BK, hãy tìm điều kiện của tam giác ABC để tam giác là tam giác đều ?
a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao
\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AH\): cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
thật ra chủ yếu là mk muốn tìm lời giải của phần c cơ phần a,b mk lm đc lâu r
cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H a, CM tam giác ABD đồng dạng với tam giác ACE
b, chứng minh góc ADE = góc ABC
c, gọi K là giao điểm của AH và BC, F là giao điểm của DK và HC cm HE.CF=CE.HF
giúp phần c vs ạ
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Cho tam giác ABC cân tại A . AH là đường cao. Từ H kẻ HM vuông góc AC tại M.
a) CM : tắm giác HMC đồng dạng với tam giác AHC
b) Gọi I là trung điểm HM. CM : tam giác HAI đồng dạng với tam giác CBM.
c) CM : AI vuông góc BM
cho tam giác ABC cân tại A đường cao AM ,D là trung điểm của AM, H là hình chiếu của M trên CD, AH cắt BC tại N, BH cắt AM tại E .c/m rằng
a)tam giác DHM đồng dạng vs tam giác DMC
b) DH.BM=AD.HM
c)EN vuông góc với AB
a) Xét \(\Delta\) DHM và \(\Delta\) DMC:
\(\widehat{MDH}chung.\)
\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)
b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)
\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow DH.MC=DM.HM.\)
Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).
\(\Rightarrow DH.BM=AD.HM.\)
c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).
\(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)
\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)
Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)
Xét \(\Delta\) ADH và \(\Delta\) BMH:
\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)
\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)
\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).
Xét \(\Delta\) AMN và \(\Delta\) BHN:
\(\widehat{N}chung.\)
\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)
\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)
\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).
Xét \(\Delta\) ABN:
AM là đường cao \(\left(AM\perp BC\right).\)
BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)
AM cắt BH tại E (gt).
\(\Rightarrow\) E là trực tâm.
\(\Rightarrow\) EN là đường cao.
\(\Rightarrow EN\perp AB.\)
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
Cho tam giác ABC vuông tại A,đường cao AH.Kẻ HK vuông góc với AC tại K
a)CM:tam giác ABC đồng dạng tam giác HAC;tam giác AHB đồng dạng tam giác HKA
b)CM: AH^2=HK.AB
c)Gọi M là trung điểm của AB,đoạn CM cắt HK tại I.Cm:I là trung điểm của HK
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có
góc HAB=góc KHA
=>ΔAHB đồng dạng với ΔHKA
b: ΔAHB đồng dạng với ΔHKA
=>AH/HK=AB/HA
=>AH^2=HK*AB
c: Xét ΔCAM có KI//AM
nên KI/AM=CI/CM
Xét ΔCMB có IH//MB
nên IH/MB=CI/CM
=>KI/AM=IH/MB
mà AM=MB
nên KI=IH
=>I là trung điểm của KH
Bài 4. (1,5 điểm)
Cho tam giác nhọn ABC
BD và CE là hai đường cao cắt nhau tại H.
a) Chứng minh rằng:
tam giác HED đồng dạng HBC
b) Chứng minh rằng:
tam giác ADE đồng dạng ABC
c) Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, cắt AB tại
I, cắt AC tại K. Chứng minh tam giác IMK là tam giác cân
giúp mik vs mn ơi
đây là đáp án bạn nhé
ảnh kia của mình nó bị thiếu nhé