Tìm m để đường thẳng (d) : y = mx-2 tiếp xúc với parabon (p): y=ax2
Tìm m để đường thẳng (d) : y = mx-2 tiếp xúc với parabon (p): y=x2
Mình đang cần gấp có ai giúp mình kg
giúp mình giải chi tiết ra đc kg bn mình đang cần gấp
https://olm.vn/hoi-dap/question/1196773.html
Đường thẳng d: y = mx + n và parabol (P): y = a x 2 ( a ≠ 0 ) tiếp xúc với nhau khi phương trình a x 2 = m x + n có:
A. Hai nghiệm phân biệt
B. Nghiệm kép
C. Vô nghiệm
D. Có hai nghiệm âm
Đáp án B
Đường thẳng d và parabol (P) tiếp xúc với nhau khi phương trình a x 2 = m x + n ⇔ a x 2 - m x - n = 0 có nghiệm kép ( Δ = 0 )
cho parabol (P): \(y=x^2-3x+2\) và đường thẳng d:\(y=mx+2\). tìm m để d tiếp xúc với (P)
Phương trình hoành độ giao điểm là:
\(x^2-3x+2=mx+2\)
=>\(x^2-3x+2-mx-2=0\)
=>\(x^2+x\left(-m-3\right)=0\)
\(\Delta=\left(-m-3\right)^2-4\cdot1\cdot1=\left(m+3\right)^2-4=\left(m+3-2\right)\left(m+3+2\right)=\left(m+1\right)\left(m+5\right)\)
Để (P) tiếp xúc với (d) thì Δ=0
=>(m+1)(m+5)=0
=>\(\left[{}\begin{matrix}m+1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-5\end{matrix}\right.\)
Đường thẳng d: y = mx + n và parabol (P): y = a . x 2 (a ≠ 0) tiếp xúc với nhau khi phương trình a x 2 = m . x + n có.
A. Hai nghiệm phân biệt
B. Nghiệm kép
C. Vô nghiệm
D. Có hai nghiệm âm
Đường thẳng d và parabol (P) tiếp xúc với nhau khi phương trình a. x 2 = m.x + n ↔a. x 2 − m.x – n = 0 có nghiệm kép (∆= 0)
Đáp án: B
Cho (P):y=2x² xác định m để đường thẳng (d):y=mx-2 tiếp xúc (P). tìm tọa độ giao điểm
Ptr hoành độ của `(P)` và `(d)` là:
`2x^2=mx-2`
`<=>2x^2-mx+2=0` `(1)`
Ptr `(1)` có: `\Delta=(-m)^2-4.2.2=m^2-16`
`(d)` tiếp xúc với `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>\Delta=0<=>m^2-16=0<=>m=+-4`
`@m=4=>2x^2-4x+2=0<=>x=1=>y=2.1^2=2`
`=>` Giao điểm là `(1;2)`
`@m=-4=>2x^2+4x+2=0<=>x=-1=>y=2.(-1)=2`
`=>` Giao điểm là `(-1;2)`
cho đường thẳng (d):y=mx+2.giá trị của m để đường thẳng d tiếp xúc với đường kính bán kính 1.
cho parabol (P): \(y=\dfrac{1}{4}x^{2}\) và đường thẳng (d): y=mx+n. Tìm giá trị của m,n để (d) đi qua điểm A(-1;-2) và tiếp xúc với (P)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
cho (p) y=2x^2 trên (p) lấy A có hoành độ là 1 lấy B có hoành độ là 2. Tìm m,n để (d) y=mx+n tiếp xúc với (p) và song song với đường thẳng AB
Thay x=1 vào (P), ta được:
y=2*1^2=2
=>A(1;2)
Thay x=2 vào (P), ta được:
y=2*2^2=8
=>B(2;8)
A(1;2); B(2;8)
Gọi (d1): AB
Theo đề, ta có:
a+b=2 và 2a+b=8
=>a=6 và b=-4
=>y=6x+4
Vì (d)//(d1) nên m=6
=>y=6x+n
PTHĐGĐ là:
2x^2-6x-n=0
Δ=(-6)^2-4*2*(-n)=8n+36
Để (P) tiếp xúc (d) thì 8n+36=0
=>8n=-36
=>n=-9/2
Tìm m để đường thẳng (d): \(y=mx+4\) tiếp xúc với đồ thị hàm số (P): \(\dfrac{-x^2}{4}\) .
(hai đồ thị hàm số tiếp xúc nhau là hai đồ thị chỉ có 1 điểm chung)
Giúp mk làm bài này với
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-4=0\)
\(\Leftrightarrow x^2+4mx+16=0\)
\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)
Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0
=>m=2 hoặc m=-2