Chứng minh rằng
A=62n+1 + 52n+2 chia hết cho 31 (n=N)
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng với mọi số tự nhiên n thì chia hết cho 8
Ta có 52n+7 = 25n+7
Lại có 25:8 dư 1 => 25n:8 dư 1n
Mà 1n = 1 => 25n chia 8 dư 1
=> 25n+7 chia 8 dư 1+7 hay dư 8
Mà 8⋮8 => đpcm
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
HELP ME............................
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Cho \(n\) là một số không chia hết cho \(3\). Chứng minh rằng \(A=5^{2n}+5^n+1\) chia hết cho \(31\).
Lời giải:
$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.
Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$
$=5^{6k}.25+5.5^{3k}+1$
Vì $5^3\equiv 1\pmod {31}$
$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Nếu $n=3k+2$ thì:
$A=5^{2(3k+2)}+5^{3k+2}+1$
$=5^{6k}.5^4+5^{3k}.5^2+1$
$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Từ 2 TH suy ra $A\vdots 31$ (đpcm)
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
Bài 2 mik ko chắc nên ko đăng lên nha bạn
a) Chứng minh rằng \(2^{1995}-1\)chia hết cho 31
b) Chứng minh rằng, với n thuộc N* ta có \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)chia hết cho 6
Chứng minh rằng a = 5n+2 +5n+1 +5n chia hết cho 31
\(CM:a=5^{n+2}+5^{n+1}+5^n⋮31\)
\(a=5^{n+2}+5^{n+1}+5^n\)
=> \(a=5^n.5^2+5^n.5+5^n\)
=> \(a=5^n\left(5^2+5+1\right)\)
=> \(a=5^n.31\)
Vì \(31⋮31\)=> \(5^n.31⋮31\)
=> \(a⋮31\)(\(đpcm\))
a = 5\(^{n+2}\) + 5\(^{n+1}\)+5\(^n\)
= 5\(^n\) .5\(^2\) + 5\(^n\).5 + 5\(^n\)
= 5\(^n\) ( 5\(^2\) +5+1)
= 5\(^n\)(25+5+1) = 5\(^n\) .31 \(⋮\) 31
Ta có : \(a=5^{n+2}+5^{n+1}+5^n\)
\(\Rightarrow a=5^n.5^2+5^n.5+5^n\)
\(\Rightarrow a=5^n.\left(5^2+5+1\right)\)
\(\Rightarrow a=5^n.31\) \(⋮31\) (đpcm)
cho n là số tự nhiên chứng minh rằng
a:6^2n+19^n-2^n+1 chia hết cho 17
b 6^2n+1 + 5^n+2 chia hết cho 31
c: 9^2n+39 chia hết cho 40
chứng minh rằng \(A=5^{n+2}+5^{n+1}+5^n\) chia hết cho 31
\(A=5^{n+2}+5^{n+1}+5^n\)
\(=5^n.5^2+5^n.5^1+5^n.1\) (tách lũy thừa thành tích)
\(=5^n\left(5^2+5^1+1\right)=5^n.31⋮31^{\left(dpcm\: \right)}\) (tách ra thừa số chung)
\(A=5^{n+2}+5^{n+1}+5^n=5^n.\left(5^2+5^1+1\right)=5^n.\left(25+5+1\right)=31.5^n⋮31\)
\(5^{n+2}\)+\(5^{n+1}\)+\(5^n\)= \(5^n\)x\(5^2\)+\(5^n\)x5+\(5^n\)
= \(5^n\)x(\(5^2\)+5+1)
= \(5^n\)x31( chia hết cho 31) ( đpcm)