Tìm các số thực x để \(x^2-1+\sqrt{143}\) và \(\frac{1}{x^2-1}-\sqrt{143}\)đều là các số nguyên
Tìm các số thực x để x^2-1+$\sqrt{143}$ và 1/x^2-1 - $\sqrt{143}$ đều là các số nguyên
Tìm các số thực x để \(x^2-1+\sqrt{143}\)và \(\frac{1}{x^2-1}-\sqrt{143}\) đều là các số nguyênn
giải giúp mình vs ạ , thanks mn
Tìm số thực x sao cho \(x^2-1+\sqrt{143}\) và \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên
Tìm số thực x để \(x+\sqrt{15}\) và \(\frac{1}{x}-\sqrt{15}\)đều là các số nguyên
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(\left(x\ge0;x\ne25\right)\)
a, Rút gọn P. Tìm các số thực x để P > -2.
b, Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên.
a, \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)
để P > -2
\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra
c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\) \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)
=> -căn x + 5 - 7 ⋮ căn x - 5
=> -(căn x - 5) - 7 ⋮ căn x - 5
=> 7 ⋮ x - 5 đoạn này dễ
a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\) đoạn này đúng rồi
\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)
\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)
Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)
Làm luôn cho đầy đủ =)
Tìm tất cả các số thực x sao cho trong 4 số \(x-\sqrt{2},x^2+2\sqrt{2},x-\frac{1}{x},x+\frac{1}{x}\) có đúng 1 số không phái là số nguyên
Tìm tất cả các số thực x sao cho trong 4 số \(x-\sqrt{2};x^2+2\sqrt{2};x-\frac{1}{x};x+\frac{1}{x}\)có đúng một số không phải là số nguyên.
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Bài 8:
\(M=1+\frac{4}{\sqrt{x}+1}\)
Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên
Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương
$\Rightarrow \sqrt{x}+1=\frac{4}{t}$
$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$
$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$
Mà $t$ nguyên dương suy ra $t=1;2;3;4$
Kéo theo $x=9; 1; \frac{1}{9}; 0$
Kết hợp đkxđ nên $x=0; \frac{1}{9};9$
Bài 9:
$P=1+\frac{5}{\sqrt{x}+2}$
Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên
Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$
$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$
$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$
Với $t>0\Rightarrow 5-2t\geq 0$
$\Leftrightarrow t\leq \frac{5}{2}$
Vì $t$ nguyên dương suy ra $t=1;2$
$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)
Bài 8:
Để M nguyên thì \(\sqrt{x}+5⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
Giải pt sau :
\(x^2-1+\sqrt{143}=\frac{1}{x^2-1}-\sqrt{143}\)
\(x^2-1+\sqrt{143}=\frac{1}{x^2-1}-\sqrt{143}\)(đk: \(x\ne1\))
Đặt \(x^2-1=a\left(a\ge-1,a\ne0\right)\)
Có \(a+\sqrt{143}=\frac{1}{a}-\sqrt{143}\)
<=> \(a-\frac{1}{a}+2\sqrt{143}=0\)
<=> \(\frac{a^2-1+2\sqrt{143}a}{a}=0\)
<=> \(a^2+2\sqrt{143}a+143=144\)
<=> \(\left(a+\sqrt{143}\right)^2=144\)
=> \(\left[{}\begin{matrix}a+\sqrt{143}=12\\a+\sqrt{143}=-12\left(ktm\right)\end{matrix}\right.\) <=> \(a=12-\sqrt{143}\)
<=> \(x^2-1=12+\sqrt{143}\)
Làm nốt nha :))